
 1

The first “advanced” technique we’ll see is recursion. Recursion is a method of
solving a problem by reducing it to a simpler problem of the same type.

Unlike most of the techniques in this book, recursion is already well known
and widely understood. But it will underlie several of the later techniques, and
so we need to have a good understanding of its fine points.

1.1

Until the release of Perl 5.6.0, there was no good way to generate a binary numeral
in Perl. Starting in 5.6.0, you can use sprintf("%b", $num), but before that the
question of how to do this was Frequently Asked.

Any whole number has the form 2k + b, where k is some smaller whole
number and b is either 0 or 1. b is the final bit of the binary expansion. It’s easy
to see whether this final bit is 0 or 1; just look to see whether the input number
is even or odd. The rest of the number is 2k, whose binary expansion is the
same as that of k, but shifted left one place. For example, consider the number
37 = 2 · 18 + 1; here k is 18 and b is 1, so the binary expansion of 37 (100101)
is the same as that of 18 (10010), but with an extra 1 on the end.

How did I compute the expansion for 37? It is an odd number, so the final
bit must be 1; the rest of the expansion will be the same as the expansion of 18.
How can I compute the expansion of 18? 18 is even, so its final bit is 0, and
the rest of the expansion is the same as the expansion of 9. What is the binary
expansion for 9? 9 is odd, so its final bit is 1, and the rest of its binary expansion is

1

2 Recursion and Callbacks

the same as the binary expansion of 4. We can continue in this way, until finally
we ask about the binary expansion of 1, which of course is 1.

This procedure will work for any number. To compute the binary expansion
of a number n we proceed as follows:

1. If n is 1, its binary expansion is 1, and we may ignore the rest of the procedure.
Similarly, if n is 0, the expansion is simply 0. Otherwise:

2. Compute k and b so that n = 2k + b and b = 0 or 1. To do this, simply
divide n by 2; k is the quotient, and b is the remainder, 0 if n was even, and
1 if n was odd.

3. Compute the binary expansion of k, using this same method. Call the
result E.

4. The binary expansion for n is Eb.

Let’s build a function called binary() that calculates the expansion. Here is the
preamble, and step 1:

sub binary {CODE LIBRARY
binary my ($n) = @_;

return $n if $n == 0 || $n == 1;

Here is step 2:

my $k = int($n/2);

my $b = $n % 2;

For the third step, we need to compute the binary expansion of k. How can
we do that? It’s easy, because we have a handy function for computing binary
expansions, called binary()— or we will once we’ve finished writing it. We’ll
call binary() with k as its argument:

my $E = binary($k);

Now the final step is a string concatenation:

return $E . $b;

}

This works. For example, if you invoke binary(37), you get the string 100101.

. 3

The essential technique here was to reduce the problem to a simpler case.
We were supposed to find the binary expansion of a number n; we discovered
that this binary expansion was the concatenation of the binary expansion of a
smaller number k and a single bit b. Then to solve the simpler case of the same
problem, we used the function binary() in its own definition. When we invoke
binary() with some number as an argument, it needs to compute binary() for
a different, smaller argument, which in turn computes binary() for an even
smaller argument. Eventually, the argument becomes 1, and binary() computes
the trivial binary representation of 1 directly.

This final step, called the base case of the recursion, is important. If we don’t
consider it, our function might never terminate. If, in the definition of binary(),
we had omitted the line:

return $n if $n == 0 || $n == 1;

then binary() would have computed forever, and would never have produced
an answer for any argument.

1.2

Suppose you have a list of n different items. For concreteness, we’ll suppose
that these items are letters of the alphabet. How many different orders are there
for such a list? Obviously, the answer depends on n, so it is a function of n.
This function is called the factorial function. The factorial of n is the number of
different orders for a list of n different items. Mathematicians usually write it as a
postfix (!) mark, so that the factorial of n is n !. They also call the different orders
permutations.

Let’s compute some factorials. Evidently, there’s only one way to order a list
of one item, so 1! = 1. There are two permutations of a list of two items: A-B
and B-A, so 2! = 2. A little pencil work will reveal that there are six permutations
of three items:

C AB C BA

A C B B C A

AB C BA C

How can we be sure we didn’t omit anything from the list? It’s not hard to come
up with a method that constructs every possible ordering, and in Chapter 4 we
will see a program to list them all. Here is one way to do it. We can make any list
of three items by adding a new item to a list of two items. We have two choices

4 Recursion and Callbacks

for the two-item list we start with: AB and BA. In each case, we have three choices
about where to put the C: at the beginning, in the middle, or at the end. There
are 2 · 3 = 6 ways to make the choices together, and since each choice leads
to a different list of three items, there must be six such lists. The preceding left
column shows all the lists we got by inserting the C into AB, and the right column
shows the lists we got by inserting the C into BA, so the display is complete.

Similarly, if we want to know how many permutations there are of four
items, we can figure it out the same way. There are six different lists of three
items, and there are four positions where we could insert the fourth item into
each of the lists, for a total of 6 · 4 = 24 total orders:

D ABC D ACB D BAC D BCA D CAB D CBA

A D BC A D CB B D AC B D CA C D AB C D BA

AB D C AC D B BA D C BC D A CA D B CB D A

ABC D ACB D BAC D BCA D CAB D CBA D

Now we’ll write a function to compute, for any n, how many permutations there
are of a list of n elements.

We’ve just seen that if we know the number of possible permutations of
n − 1 things, we can compute the number of permutations of n things. To make
a list of n things, we take one of the (n − 1)! lists of n − 1 things and insert
the nth thing into one of the n available positions in the list. Therefore, the total
number of permutations of n items is (n − 1)! · n:

sub factorial {

my ($n) = @_;

return factorial($n-1) * $n;

}

Oops, this function is broken; it never produces a result for any input, because
we left out the termination condition. To compute factorial(2), it first tries
to compute factorial(1). To compute factorial(1), it first tries to compute
factorial(0). To compute factorial(0), it first tries to compute factorial(-1).
This process continues forever. We can fix it by telling the function explicitly what
0! is so that when it gets to 0 it doesn’t need to make a recursive call:

sub factorial {CODE LIBRARY
factorial my ($n) = @_;

return 1 if $n == 0;

return factorial($n-1) * $n;

}

. 5

Now the function works properly.
It may not be immediately apparent why the factorial of 0 is 1. Let’s return to

the definition. factorial($n) is the number of different orders of a given list of
$n elements. factorial(2) is 2, because there are two ways to order a list of two
elements: ('A', 'B') and ('B', 'A'). factorial(1) is 1, because there is only
one way to order a list of one element: ('A'). factorial(0) is 1, because there is
only one way to order a list of zero elements: (). Sometimes people are tempted
to argue that 0! should be 0, but the example of () shows clearly that it isn’t.

Getting the base case right is vitally important in recursive functions, because
if you get it wrong, it will throw off all the other results from the function. If we
were to erroneously replace return 1 in the preceding function with return 0,
it would no longer be a function for computing factorials; instead, it would be
a function for computing zero.

1.2.1 Why Private Variables Are Important

Let’s spend a little while looking at what happens if we leave out the my. The
following version of factorial() is identical to the previous version, except that
it is missing the my declaration on $n:

sub factorial { CODE LIBRARY
factorial-broken($n) = @_;

return 1 if $n == 0;

return factorial($n-1) * $n;

}

Now $n is a global variable, because all Perl variables are global unless they are
declared with my. This means that even though several copies of factorial()

might be executing simultaneously, they are all using the same global variable $n.
What effect does this have on the function’s behavior?

Let’s consider what happens when we call factorial(1). Initially, $n is set to
1, and the test on the second line fails, so the function makes a recursive call to
factorial(0). The invocation of factorial(1)waits around for the new function
call to complete. When factorial(0) is entered, $n is set to 0. This time the test
on the second line is true, and the function returns immediately, yielding 1.

The invocation of factorial(1) that was waiting for the answer to
factorial(0) can now continue; the result from factorial(0) is 1. factorial(1)
takes this 1, multiplies it by the value of $n, and returns the result. But $n is now
0, because factorial(0) set it to 0, so the result is 1 · 0 = 0. This is the final,
incorrect return value of factorial(1). It should have been 1, not 0.

6 Recursion and Callbacks

Similarly, factorial(2) returns 0 instead of 2, factorial(3) returns 0
instead of 6, and so on.

In order to work properly, each invocation of factorial() needs to have its
own private copy of $n that the other invocations won’t interfere with, and that’s
exactly what my does. Each time factorial() is invoked, a new variable is created
for that invocation to use as its $n.

Other languages that support recursive functions all have variables that work
something like Perl’s my variables, where a new one is created each time the func-
tion is invoked. For example, in C, variables declared inside functions have this
behavior by default, unless declared otherwise. (In C, such variables are called
auto variables, because they are automatically allocated and deallocated.) Using
global variables or some other kind of storage that isn’t allocated for each invo-
cation of a function usually makes it impossible to call that function recursively;
such a function is called non-reentrant. Non-reentrant functions were once quite
common in the days when people used languages like Fortran (which didn’t sup-
port recursion until 1990) and became less common as languages with private
variables, such as C, became popular.

1.3

Both our examples so far have not actually required recursion; they could both
be rewritten as simple loops.

This sort of rewriting is always possible, because after all, the machine lan-
guage in your computer probably doesn’t support recursion, so in some sense it
must be inessential. For the factorial function, the rewriting is easy, but this isn’t
always so. Here’s an example. It’s a puzzle that was first proposed by Edouard
Lucas in 1883, called the Tower of Hanoi.

The puzzle has three pegs, called A, B, and C. On peg A is a tower of disks
of graduated sizes, with the largest on the bottom and the smallest on the top
(see Figure 1.1).

The puzzle is to move the entire tower from A to C, subject to the following
restrictions: you may move only one disk at a time, and no disk may ever rest
atop a smaller disk. The number of disks varies depending on who is posing the
problem, but it is traditionally 64. We will try to solve the problem in the general
case, for n disks.

Let’s consider the largest of the n disks, which is the one on the bottom.
We’ll call this disk “the Big Disk.” The Big Disk starts on peg A, and we want it
to end on peg C. If any other disks are on peg A, they are on top of the Big Disk,
so we will not be able to move it. If any other disks are on peg C, we will not be
able to move the Big Disk to C because then it would be atop a smaller disk. So if

. 7

 . The initial configuration of the Tower of Hanoi.

 . An intermediate stage of the Tower of Hanoi.

we want to move the Big Disk from A to C, all the other disks must be heaped
up on peg B, in size order, with the smallest one on top (see Figure 1.2).

This means that to solve this problem, we have a subgoal: we have to move
the entire tower of disks, except for the Big Disk, from A to B. Only then we
can transfer the Big Disk from A to C. After we’ve done that, we will be able to
move the rest of the tower from B to C; this is another subgoal.

Fortunately, when we move the smaller tower, we can ignore the Big Disk; it
will never get in our way no matter where it is. This means that we can apply the
same logic to moving the smaller tower. At the bottom of the smaller tower is a
large disk; we will move the rest of the tower out of the way, move this bottom
disk to the right place, and then move the rest of the smaller tower on top of it.
How do we move the rest of the smaller tower? The same way.

The process bottoms out when we have to worry about moving a smaller
tower that contains only one disk, which will be the smallest disk in the whole
set. In that case our subgoals are trivial, and we just put the little disk wherever
we need to. We know that there will never be anything on top of it (because that

8 Recursion and Callbacks

would be illegal) and we know that we can always move it wherever we like; it’s
the smallest, so it is impossible to put it atop anything smaller.

Our strategy for moving the original tower looks like this:
To move a tower of n disks from the start peg to the end peg,

1. If the “tower” is actually only one disk high, just move it. Otherwise:

2. Move all the disks except for disk n (the Big Disk) from the start peg to the
extra peg, using this method.

3. Move disk n (the Big Disk) from the start peg to the end peg.

4. Move all the other disks from the extra peg to the end peg, using this method.

It’s easy to translate this into code:

hanoi(N, start, end, extra)CODE LIBRARY
hanoi # Solve Tower of Hanoi problem for a tower of N disks,

of which the largest is disk #N. Move the entire tower from

peg 'start' to peg 'end', using peg 'extra' as a work space

sub hanoi {

my ($n, $start, $end, $extra) = @_;

if ($n == 1) {

print "Move disk #1 from $start to $end.\n"; # Step 1

} else {

hanoi($n-1, $start, $extra, $end); # Step 2

print "Move disk #$n from $start to $end.\n"; # Step 3

hanoi($n-1, $extra, $end, $start); # Step 4

}

}

This function prints a series of instructions for how to move the tower.
For example, to ask it for instructions for moving a tower of three disks, we
call it like this:

hanoi(3, 'A', 'C', 'B');

Its output is:

Move disk #1 from A to C.

Move disk #2 from A to B.

Move disk #1 from C to B.

Move disk #3 from A to C.

. 9

Move disk #1 from B to A.

Move disk #2 from B to C.

Move disk #1 from A to C.

If we wanted a graphic display of moving disks instead of a simple printout
of instructions, we could replace the print statements with something fancier.
But we can make the software more flexible almost for free by parametrizing
the output behavior. Instead of having a print statement hardwired in, hanoi()
will accept an extra argument that is a function that will be called each time
hanoi() wants to move a disk. This function will print an instruction, or update
a graphical display, or do whatever else we want. The function will be passed
the number of the disk, and the source and destination pegs. The code is almost
exactly the same:

sub hanoi {

my ($n, $start, $end, $extra, $move_disk) = @_;

if ($n == 1) {

$move_disk->(1, $start, $end);

} else {

hanoi($n-1, $start, $extra, $end, $move_disk);

$move_disk->($n, $start, $end);

hanoi($n-1, $extra, $end, $start, $move_disk);

}

}

To get the behavior of the original version, we now invoke hanoi() like this:

sub print_instruction {

my ($disk, $start, $end) = @_;

print "Move disk #$disk from $start to $end.\n";

}

hanoi(3, 'A', 'C', 'B', \&print_instruction);

The \&print_instruction expression generates a code reference, which is a scalar
value that represents the function. You can store the code reference in a scalar
variable just like any other scalar, or pass it as an argument just like any other
scalar, and you can also use the reference to invoke the function that it represents.
To do that, you write:

$code_reference->(arguments...);

10 Recursion and Callbacks

This invokes the function with the specified arguments.1 Code references are
often referred to as coderefs.

The coderef argument to hanoi() is called a callback, because it is a function
supplied by the caller of hanoi() that will be “called back” to when hanoi()

needs help. We sometimes also say that the $move_disk argument of hanoi()

is a hook, because it provides a place where additional functionality may easily
be hung.

Now that we have a generic version of hanoi(), we can test the algorithm
by passing in a $move_disk function that keeps track of where the disks are and
checks to make sure we aren’t doing anything illegal:

@position = ('', ('A') x 3); # Disks are all initially on peg ACODE LIBRARY
check-move

sub check_move {

my $i;

my ($disk, $start, $end) = @_;

The check_move() function maintains an array, @position, that records the cur-
rent position of every disk. Initially, every disk is on peg A. Here we assume
that there are only three disks, so we set $position[1], $position[2], and
$position[3] to "A". $position[0] is a dummy element that is never used
because there is no disk 0. Each time the main hanoi() function wants to move
a disk, it calls check_move().

if ($disk < 1 || $disk > $#position) {

die "Bad disk number $disk. Should be 1..$#position.\n";

}

This is a trivial check to make sure that hanoi() doesn’t try to move a nonexistent
disk.

unless ($position[$disk] eq $start) {

die "Tried to move disk $disk from $start, but it is on peg

$position[$disk].\n";

}

1 This notation was introduced in Perl 5.004; users of 5.003 or earlier will have to use a much
uglier notation instead: &{$code_reference}(arguments...);. When the $code_reference

expression is a simple variable, as in the example, the curly braces may be omitted.

. 11

Here the function checks to make sure that hanoi() is not trying to move a disk
from a peg where it does not reside. If the start peg does not match check_move()’s
notion of the current position of the disk, the function signals an error.

for $i (1 .. $disk-1) {

if ($position[$i] eq $start) {

die "Can't move disk $disk from $start because $i is on top of it.\n";

} elsif ($position[$i] eq $end) {

die "Can't move disk $disk to $end because $i is already there.\n";

}

}

This is the really interesting check. The function loops over all the disks that are
smaller than the one hanoi() is trying to move, and makes sure that the smaller
disks aren’t in the way. The first if branch makes sure that each smaller disk is
not on top of the one hanoi() wants to move, and the second branch makes sure
that hanoi() is not trying to move the current disk onto the smaller disk.

print "Moving disk $disk from $start to $end.\n";

$position[$disk] = $end;

}

Finally, the function has determined that there is nothing wrong with the move,
so it prints out a message as before, and adjusts the @position array to reflect the
new position of the disk.

Running:

hanoi(3, 'A', 'C', 'B', \&check_move);

yields the same output as before, and no errors — hanoi() is not doing anything
illegal.

This example demonstrates a valuable technique we’ll see over and over again:
by parametrizing some part of a function to call some other function instead of
hardwiring the behavior, we can make it more flexible. This added flexibility will
pay off when we want the function to do something a little different, such as
performing an automatic self-check. Instead of having to clutter up the function
with a lot of optional self-testing code, we can separate the testing part from the
main algorithm. The algorithm remains as clear and simple as ever, and we can
enable or disable the self-checking code at run time if we want to, by passing a
different coderef argument.

12 Recursion and Callbacks

1.4

The examples we’ve seen give the flavor of what a recursive procedure looks like,
but they miss an important point. In introducing the Tower of Hanoi problem,
I said that recursion is useful when you want to solve a problem that can be
reduced to simpler cases of the same problem. But it might not be clear that such
problems are common.

Most recursive functions are built to deal with recursive data structures. A
recursive data structure is one like a list, tree, or heap that is defined in terms
of simpler instances of the same data structure. The most familiar example is
probably a file system directory structure. A file is either:

• a plain file, which contains some data, or

• a directory, which contains a list of files

A file might be a directory, which contains a list of files, some of which might be
directories, which in turn contain more lists of files, and so on. The most effective
way of dealing with such a structure is with a recursive procedure. Conceptually,
each call to such a procedure handles a single file. The file might be a plain file,
or it might be a directory, in which case the procedure makes recursive calls to
itself to handle any subfiles that the directory has. If the subfiles are themselves
directories, the procedure will make more recursive calls.

Here’s an example of a function that takes the name of a directory as its
argument and computes the total size of all the files contained in it, and in its
subdirectories, and in their subdirectories, and so on:

sub total_size {CODE LIBRARY
total-size-broken my ($top) = @_;

my $total = -s $top;

When we first call the function, it’s with an argument $top, which is the name of
the file or directory we want to examine. The first thing the function does is use
the Perl -s operator to find the size of this file or directory itself. This operator
yields the size of the file, in bytes. If the file is a directory, it says how much space
the directory itself takes up on the disk, apart from whatever files the directory
may contain — the directory is a list of files, remember, and the list takes up
some space too. If the top file is actually a directory, the function will add the
sizes of its contents to a running total that it will keep in $total.

return $total if -f $top;

unless (opendir DIR, $top) {

. 13

warn "Couldn’t open directory $top: $!; skipping.\n";

return $total;

}

The -f operator checks to see if the argument is a plain file; if so, the function can
return the total immediately. Otherwise, it assumes that the top file is actually a
directory, and tries to open it with opendir(). If the directory can’t be opened,
the function issues a warning message and returns the total so far, which includes
the size of the directory itself, but not its contents.

my $file;

while ($file = readdir DIR) {

next if $file eq '.' || $file eq '..';

$total += total_size("$top/$file");

}

The next block, the while loop, is the heart of the function. It reads filenames
from the directory one at a time, calls itself recursively on each one, and adds the
result to the running total.

closedir DIR;

return $total;

}

At the end of the loop, the function closes the directory and returns the
total.

In the loop, the function skips over the names . and .., which are aliases for
the directory itself and for its parent; if it didn’t do this, it would never finish,
because it would try to compute the total sizes of a lot of files with names like
././././././fred and dir/../dir/../dir/../dir/fred.

This function has a gigantic bug, and in fact it doesn’t work at all. The
problem is that directory handles, like DIR, are global, and so our function is not
reentrant. The function fails for essentially the same reason that the my-less version
of factorial() failed. The first call goes ahead all right, but if total_size()

calls itself recursively, the second invocation will open the same dirhandle DIR.
Eventually, the second invocation will reach the end of its directory, close DIR,
and return. When this happens, the first invocation will try to continue, find that
DIR has been closed, and exit the while loop without having read all the filenames
from the top directory. The second invocation will have the same problem if it
makes any recursive calls itself.

14 Recursion and Callbacks

The result is that the function, as written, looks down only the first branch
of the directory tree. If the directory hierarchy has a structure like this:

Top

a b c

lj k

d e f g h i

then our function will go down the top-a-d path, see files j and k, and report the
total size of top + a + d + j + k, without ever noticing b, c, e, f, g, h, i, or l.

To fix it, we need to make the directory handle DIR a private variable, like $top
and $total. Instead of opendir DIR, $top, we’ll use opendir $dir, $top, where
$dir is a private variable. When the first argument to opendir is an undefined
variable, opendir will create a new, anonymous dirhandle and store it into $dir.2

Instead of doing this:

opendir DIR, $somedir;

print (readdir DIR);

closedir DIR;

we can get the same effect by doing this instead:

my $dir;

opendir $dir, $somedir;

print (readdir $dir);

closedir $dir;

The big difference is that DIR is a global dirhandle, and can be read or closed by
any other part of the program; the dirhandle in $dir is private, and can be read

2 This feature was introduced in Perl 5.6.0. Users of earlier Perl versions will have to use
the IO::Handle module to explicitly manufacture a dirhandle: my $dir = IO::Handle->new;

opendir $dir, $top;.

. 15

or closed only by the function that creates it, or by some other function that is
explicitly passed the value of $dir.

With this new technique, we can rewrite the total_size() function so that
it works properly:

sub total_size { CODE LIBRARY
total-sizemy ($top) = @_;

my $total = -s $top;

my $DIR;

return $total if -f $top;

unless (opendir $DIR, $top) {

warn "Couldn’t open directory $top: $!; skipping.\n";

return $total;

}

my $file;

while ($file = readdir $DIR) {

next if $file eq '.' || $file eq '..';

$total += total_size("$top/$file");

}

closedir $DIR;

return $total;

}

Actually, the closedir here is unnecessary, because dirhandles created with this
method close automatically when the variables that contain them go out of scope.
When total_size() returns, its private variables are destroyed, including $DIR,
which contains the last reference to the dirhandle object we opened. Perl then
destroys the dirhandle object, and in the process, closes the dirhandle. We will
omit the explicit closedir in the future.

This function still has some problems: it doesn’t handle symbolic links cor-
rectly, and if a file has two names in the same directory, it gets counted twice.
Also, on Unix systems, the space actually taken up by a file on disk is usually
different from the length reported by -s, because disk space is allocated in blocks
of 1024 bytes at a time. But the function is good enough to be useful, and
we might want to apply it to some other tasks as well. If we do decide to fix
these problems, we will need to fix them only in this one place, instead of fixing
the same problems in fifty slightly different directory-walking functions in fifty
different applications.

16 Recursion and Callbacks

1.5

Having a function that walks a directory tree is useful, and we might like to use
it for all sorts of things. For example, if we want to write a recursive file lister
that works like the Unix ls -R command, we’ll need to walk the directory tree.
We might want our function to behave more like the Unix du command, which
prints out the total size of every subdirectory, as well as the total for all the files it
found. We might want our function to search for dangling symbolic links; that
is, links that point to nonexistent files. A frequently asked question in the Perl
newsgroups and IRC channels is how to walk a directory tree and rename each
file or perform some other operation on each file.

We could write many different functions to do these tasks, each one a little
different. But the core part of each one is the recursive directory walker, and we’d
like to abstract that out so that we can use it as a tool. If we can separate the
walker, we can put it in a library, and then anyone who needs a directory walker
can use ours.

An important change of stance occurred in the last paragraph. Starting from
here, and for most of the rest of the book, we are going to take a point of
view that you may not have seen before: we are no longer interested in devel-
oping a complete program that we or someone else might use entirely. Instead,
we are going to try to write our code so that it is useful to another program-
mer who might want to re-use it in another program. Instead of writing a
program, we are now writing a library or module that will be used by other
programs.

One direction that we could go from here would be to show how to write
a user interface for the total_size() function, which might prompt the user for
a directory name, or read a directory name from the command line or from a
graphical widget, and then would display the result somehow. We are not going
to do this. It is not hard to add code to prompt the user for a directory name
or to read the command-line arguments. For the rest of this book, we are not
going to be concerned with user interfaces; instead, we are going to look at
programmer interfaces. The rest of the book will talk about “the user,” but it’s not
the usual user. Instead, the user is another programmer who wants to use our
code when writing their own programs. Instead of asking how we can make our
entire program simple and convenient for an end-user, we will look at ways to
make our functions and libraries simple and convenient for other programmers
to use in their own programs.

There are two good reasons for doing this. One is that if our functions
are well designed for easy re-use, we will be able to re-use them ourselves and
save time and trouble. Instead of writing similar code over and over, we’ll plug a

. 17

familiar directory-walking function into every program that needs one. When we
improve the directory-walking function in one program, it will be automatically
improved in all our other programs as well. Over time, we’ll develop a toolkit of
useful functions and libraries that will make us more productive, and we’ll have
more fun programming.

But more importantly, if our functions are well designed for re-use, other
programmers will be able to use them, and they will get the same benefits that
we do. And being useful to other people is the reason we’re here in the first
place.3

With that change of stance clearly in mind, let’s go on. We had written
a function, total_size(), which contained useful functionality: it walked a
directory tree recursively. If we could cleanly separate the directory-walking part
of the code from the total-size-computing part, then we might be able to re-use
the directory-walking part in many other projects for many other purposes. How
can we separate the two functionalities?

As in the Tower of Hanoi program, the key here is to pass an additional
parameter to our function. The parameter will itself be a function that tells
total_size() what we want it to do. The code will look like this:

sub dir_walk { CODE LIBRARY
dir-walk-simplemy ($top, $code) = @_;

my $DIR;

$code->($top);

if (-d $top) {

my $file;

unless (opendir $DIR, $top) {

warn "Couldn’t open directory $top: $!; skipping.\n";

return;

}

while ($file = readdir $DIR) {

next if $file eq '.' || $file eq '..';

dir_walk("$top/$file", $code);

}

}

}

3 Some people find this unpersuasive, so perhaps I should point out that if we make ourselves useful
to other people, they will love and admire us, and they might even pay us more.

18 Recursion and Callbacks

This function, which I’ve renamed dir_walk() to honor its new generality, gets
two arguments. The first, $top, is the name of the file or directory that we want
it to start searching in, as before. The second, $code, is new. It’s a coderef that
tells dir_walk what we want to do for each file or directory that we discover in
the file tree. Each time dir_walk() discovers a new file or directory, it will invoke
our code with the filename as the argument.

Now whenever we meet another programmer who asks us, “How do I do X
for every file in a directory tree?” we can answer, “Use this dir_walk() function,
and give it a reference to a function that does X.” The $code argument is a
callback.

For example, to get a program that prints out a list of all the files and
directories below the current directory, we can use:

sub print_dir {

print $_[0], "\n";

}

dir_walk('.', \&print_dir);

This prints out something like this:

.

./a

./a/a1

./a/a2

./b

./b/b1

./c

./c/c1

./c/c2

./c/c3

./c/d

./c/d/d1

./c/d/d2

(The current directory contains three subdirectories, named a, b, and c. Sub-
directory c contains a sub-subdirectory, named d.)

print_dir is so simple that it’s a shame to have to waste time thinking of a
name for it. It would be convenient if we could simply write the function without
having to write a name for it, analogous to the way we can write:

$weekly_pay = 40 * $hourly_pay;

. 19

without having to name the 40 or store it in a variable. Perl does provide a syntax
for this:

dir_walk('.', sub { print $_[0], "\n" });

The sub { ... } introduces an anonymous function; that is, a function with no
name. The value of the sub { ... } construction is a coderef that can be used
to call the function. We can store this coderef in a scalar variable or pass it as
an argument to a function like any other reference. This one line does the same
thing as our more verbose version with the named print_dir function.

If we want the function to print out sizes along with filenames, we need only
make a small change to the coderef argument:

dir_walk('.', sub { printf "%6d %s\n", -s $_[0], $_[0] });

4096 .

4096 ./a

261 ./a/a1

171 ./a/a2

4096 ./b

348 ./b/b1

4096 ./c

658 ./c/c1

479 ./c/c2

889 ./c/c3

4096 ./c/d

568 ./c/d/d1

889 ./c/d/d2

If we want the function to locate dangling symbolic links, it’s just as easy:

dir_walk('.', sub { print $_[0], "\n" if -l $_[0] && ! -e $_[0] });

-l tests the current file to see if it’s a symbolic link, and -e tests to see if the file
that the link points at exists.

But my promises fall a little short. There’s no simple way to get the new
dir_walk() function to aggregate the sizes of all the files it sees. $code is invoked
for only one file at a time, so it never gets a chance to aggregate. If the aggregation
is sufficiently simple, we can accomplish it with a variable defined outside the
callback:

my $TOTAL = 0;

20 Recursion and Callbacks

dir_walk('.', sub { $TOTAL += -s $_[0] });

print "Total size is $TOTAL.\n";

There are two drawbacks to this approach. One is that the callback function
must reside in the scope of the $TOTAL variable, as must any code that plans to
use $TOTAL. Often this isn’t a problem, as in this case, but if the callback were a
complicated function in a library somewhere, it might present difficulties. We’ll
see a solution to this problem in Section 2.1.

The other drawback is that it works well only when the aggregation is
extremely simple, as it is here. Suppose instead of accumulating a single total
size, we wanted to build a hash structure of filenames and sizes, like this one:

{

'a' => {

'a1' => '261',

'a2' => '171'

},

'b' => {

'b1' => '348'

},

'c' => {

'c1' => '658',

'c2' => '479',

'c3' => '889',

'd' => {

'd1' => '568',

'd2' => '889'

}

}

}

Here the keys are file and directory names. The value for a filename is the size
of the file, and the value for a directory name is a hash with keys and values
that represent the contents of the directory. It may not be clear how we could
adapt the simple $TOTAL-aggregating callback to produce a complex structure like
this one.

Our dir_walk function is not general enough. We need it to perform some
computation involving the files it examines, such as computing their total size,
and to return the result of this computation to its caller. The caller might be the
main program, or it might be another invocation of dir_walk(), which can then
use the value it receives as part of the computation it is performing for its caller.

. 21

How can dir_walk() know how to perform the computation? In
total_size(), the addition computation was hardwired into the function. We
would like dir_walk() to be more generally useful.

What we need is to supply two functions: one for plain files and one for
directories. dir_walk() will call the plain-file function when it needs to compute
its result for a plain file, and it will call the directory function when it needs to
compute its result for a directory. dir_walk() won’t know anything about how
to do these computations itself; all it knows is that is should delegate the actual
computing to these two functions.

Each of the two functions will get a filename argument, and will compute
the value of interest, such as the size, for the file named by its argument. Since a
directory is a list of files, the directory function will also receive a list of the values
that were computed for each of its members; it may need these values when it
computes the value for the entire directory. The directory function will know
how to aggregate these values to produce a new value for the entire directory.

With this change, we’ll be able to do our total_size operation. The plain-file
function will simply return the size of the file it’s asked to look at. The directory
function will get a directory name and a list of the sizes of each file that it contains,
add them all up, and return the result. The generic framework function looks
like this:

sub dir_walk { CODE LIBRARY
dir-walk-cbmy ($top, $filefunc, $dirfunc) = @_;

my $DIR;

if (-d $top) {

my $file;

unless (opendir $DIR, $top) {

warn "Couldn’t open directory $code: $!; skipping.\n";

return;

}

my @results;

while ($file = readdir $DIR) {

next if $file eq '.' || $file eq '..';

push @results, dir_walk("$top/$file", $filefunc, $dirfunc);

}

return $dirfunc->($top, @results);

} else {

return $filefunc->($top);

}

}

22 Recursion and Callbacks

To compute the total size of the current directory, we will use this:

sub file_size { -s $_[0] }

sub dir_size {

my $dir = shift;

my $total = -s $dir;

my $n;

for $n (@_) { $total += $n }

return $total;

}

$total_size = dir_walk('.', \&file_size, \&dir_size);

The file_size() function says how to compute the size of a plain file, given its
name, and the dir_size() function says how to compute the size of a directory,
given the directory name and the sizes of its contents.

If we want the program to print out the size of every subdirectory, the way
the du command does, we add one line:

sub file_size { -s $_[0] }

sub dir_size {

my $dir = shift;

my $total = -s $dir;

my $n;

for $n (@_) { $total += $n }

printf "%6d %s\n", $total, $dir;

return $total;

}

$total_size = dir_walk('.', \&file_size, \&dir_size);

This produces an output like this:

4528 ./a

4444 ./b

5553 ./c/d

11675 ./c

24743 .

. 23

To get the function to produce the hash structure we saw earlier, we can supply
the following pair of callbacks:

sub file { CODE LIBRARY
dir-walk-sizehashmy $file = shift;

[short($file), -s $file];

}

sub short {

my $path = shift;

$path =˜ s{.*/}{};

$path;

}

The file callback returns an array with the abbreviated name of the file (no full
path) and the file size. The aggregation is, as before, performed in the directory
callback:

sub dir {

my ($dir, @subdirs) = @_;

my %new_hash;

for (@subdirs) {

my ($subdir_name, $subdir_structure) = @$_;

$new_hash{$subdir_name} = $subdir_structure;

}

return [short($dir), \%new_hash];

}

The directory callback gets the name of the current directory, and a list of name–
value pairs that correspond to the subfiles and subdirectories. It merges these
pairs into a hash, and returns a new pair with the short name of the current
directory and the newly constructed hash for the current directory.

The simpler functions that we wrote before are still easy. Here’s the recursive
file lister. We use the same function for files and for directories:

sub print_filename { print $_[0], "\n" }

dir_walk('.', \&print_filename, \&print_filename);

Here’s the dangling symbolic link detector:

sub dangles {

my $file = shift;

24 Recursion and Callbacks

print "$file\n" if -l $file && ! -e $file;

}

dir_walk('.', \&dangles, sub {});

We know that a directory can’t possibly be a dangling symbolic link, so our
directory function is the null function that returns immediately without doing
anything. If we had wanted, we could have avoided this oddity, and its associated
function-call overhead, as follows:

sub dir_walk {CODE LIBRARY
dir-walk-cb-def my ($top, $filefunc, $dirfunc) = @_;

my $DIR;

if (-d $top) {

my $file;

unless (opendir $DIR, $top) {

warn "Couldn’t open directory $top: $!; skipping.\n";

return;

}

my @results;

while ($file = readdir $DIR) {

next if $file eq '.' || $file eq '..';

push @results, dir_walk("$top/$file", $filefunc, $dirfunc);

}

return $dirfunc ? $dirfunc->($top, @results) : () ;

} else {

return $filefunc ? $filefunc->($top): () ;

}

}

This allows us to write dir_walk('.', \&dangles) instead of dir_walk('.',

\&dangles, sub {}).
As a final example, let’s use dir_walk() in a slightly different way, to

manufacture a list of all the plain files in a file tree, without printing anything:

@all_plain_files =

dir_walk('.', sub { $_[0] }, sub { shift; return @_ });

The file function returns the name of the file it’s invoked on. The directory func-
tion throws away the directory name and returns the list of the files it contains.
What if a directory contains no files at all? Then it returns an empty list to

. - 25

dir_walk(), and this empty list will be merged into the result list for the other
directories at the same level.

1.6 -

Now let’s back up a moment and look at what we did. We had a useful function,
total_size(), which contained code for walking a directory structure that was
going to be useful in other applications. So we made total_size() more general
by pulling out all the parts that related to the computation of sizes, and replacing
them with calls to arbitrary user-specified functions. The result was dir_walk().
Now, for any program that needs to walk a directory structure and do something,
dir_walk() handles the walking part, and the argument functions handle the “do
something” part. By passing the appropriate pair of functions to dir_walk(), we
can make it do whatever we want it to. We’ve gained flexibility and the chance
to re-use the dir_walk() code by factoring out the useful part and parametrizing
it with two functional arguments. This is the heart of the functional style of
programming.

Object-oriented (OO) programming style gets a lot more press these days.
The goals of the OO style are the same as those of the functional style: we
want to increase the re-usability of software components by separating them into
generally useful parts.

In an OO system, we could have transformed total_size() analogously,
but the result would have looked different. We would have made total_size()

into an abstract base class of directory-walking objects, and these objects would
have had a method, dir_walk(), which in turn would make calls to two unde-
fined virtual methods called file and directory. (In C++ jargon, these are
called pure virtual methods.) Such a class wouldn’t have been useful by itself,
because the file and directory methods would be missing. To use the class, you
would create a subclass that defined the file and directory methods, and then
create objects in the subclass. These objects would all inherit the same dir_walk

method.
In this case, I think the functional style leads to a lighter-weight solution

that is easier to use, and that keeps the parameter functions close to the places
they are used instead of stuck off in a class file. But the important point is that
although the styles are different, the decomposition of the original function into
useful components has exactly the same structure. Where the functional style
uses functional arguments, the object-oriented style uses pure virtual methods.
Although the rest of this book is about the functional style of programming, many

26 Recursion and Callbacks

of the techniques will be directly applicable to object-oriented programming
styles also.

1.7

I promised that recursion was useful for operating on hierarchically defined data
structures, and I used the file system as an example. But it’s a slightly peculiar
example of a data structure, since we normally think of data structures as being
in memory, not on the disk.

What gave rise to the tree structure in the file system was the presence of
directories, each of which contains a list of other files. Any domain that has items
that include lists of other items will contain tree structures. An excellent example
is HTML data.

HTML data is a sequence of elements and plain text. Each element has some
content, which is a sequence of more elements and more plain text. This is a
recursive description, analogous to the description of the file system, and the
structure of an HTML document is analogous to the structure of the file system.

Elements are tagged with a start tag, which looks like this:

and a corresponding end tag, like this:

The start tag may have a set of attribute–value pairs, in which case it might look
something like this instead:

The end tag is the same in any case. It never has any attribute–value pairs.
In between the start and end tags can be any sequence of HTML text,

including more elements, and also plain text. Here’s a simple example of an
HTML document:

<h1>What Junior Said Next</h1>

<p>But I don’t want

to go to bed now!</p>

This document’s structure is shown in Figure 1.3.

. 27

(document)

<h1> <p>newlines

What Junior Said Next to go to bed now!But I don't

want

 . An HTML document.

The main document has three components: the <h1> element, with its con-
tents; the <p> element, with its contents; and the blank space in between. The
<p> element, in turn, has three components: the untagged text before the
element; the element, with its contents; and the untagged text after the
 element. The <h1> element has one component, which is the untagged
text What Junior Said Next.

In Chapter 8, we’ll see how to build parsers for languages like HTML. In
the meantime, we’ll look at a semi-standard module, HTML::TreeBuilder, which
converts an HTML document into a tree structure.

Let’s suppose that the HTML data is already in a variable, say $html. The
following code uses HTML::TreeBuilder to transform the text into an explicit tree
structure:

use HTML::TreeBuilder;

my $tree = HTML::TreeBuilder->new;

$tree->ignore_ignorable_whitespace(0);

$tree->parse($html);

$tree->eof();

The ignore_ignorable_whitespace() method tells HTML::TreeBuilder that it’s
not allowed to discard certain whitespace, such as the newlines after the <h1>

element, that are normally ignorable.
Now $tree represents the tree structure. It’s a tree of hashes; each hash is a

node in the tree and represents one element. Each hash has a _tag key whose
value is its tag name, and a _content key whose value is a list of the element’s
contents, in order; each item in the _content list is either a string, representing
tagless text, or another hash, representing another element. If the tag also has
attribute–value pairs, they’re stored in the hash directly, with attributes as hash
keys and the corresponding values as hash values.

28 Recursion and Callbacks

So for example, the tree node that corresponds to the element in the
example looks like this:

{ _tag => "font",

_content => ["want"],

color => "red",

size => 3,

}

The tree node that corresponds to the <p> element contains the node,
and looks like this:

{ _tag => "p",

_content => ["But I don't ",

{ _tag => "font",

_content => ["want"],

color => "red",

size => 3,

},

" to go to bed now!",

],

}

It’s not hard to build a function that walks one of these HTML trees and “untags”
all the text, stripping out the tags. For each item in a _content list, we can
recognize it as an element with the ref() function, which will yield true for
elements (which are hash references) and false for plain strings:

sub untag_html {CODE LIBRARY
untag-html my ($html) = @_;

return $html unless ref $html; # It’s a plain string

my $text = '';

for my $item (@{$html->{_content}}) {

$text .= untag_html($item);

}

return $text;

}

The function checks to see if the HTML item passed in is a plain string, and
if so the function returns it immediately. If it’s not a plain string, the function

. 29

assumes that it is a tree node, as described above, and iterates over its content,
recursively converting each item to plain text, accumulating the resulting strings,
and returning the result. For our example, this is:

What Junior Said Next But I don't want to go to bed now!

Sean Burke, the author of HTML::TreeBuilder, tells me that accessing the internals
of the HTML::TreeBuilder objects this way is naughty, because he might change
them in the future. Robust programs should use the accessor methods that the
module provides. In these examples, we will continue to access the internals
directly.

We can learn from dir_walk() and make this function more useful by sepa-
rating it into two parts: the part that processes an HTML tree, and the part that
deals with the specific task of assembling plain text:

sub walk_html { CODE LIBRARY
walk-htmlmy ($html, $textfunc, $elementfunc) = @_;

return $textfunc->($html) unless ref $html; # It’s a plain string

my @results;

for my $item (@{$html->{_content}}) {

push @results, walk_html($item, $textfunc, $elementfunc);

}

return $elementfunc->($html, @results);

}

This function has exactly the same structure as dir_walk(). It gets two auxiliary
functions as arguments: a $textfunc that computes some value of interest for a
plain text string, and an $elementfunc that computes the corresponding value
for an element, given the element and the values for the items in its content.
$textfunc is analogous to the $filefunc from dir_walk(), and $elementfunc is
analogous to the $dirfunc.

Now we can write our untagger like this:

walk_html($tree, sub { $_[0] },

sub { shift; join '', @_ });

The $textfunc argument is a function that returns its argument unchanged.
The $elementfunc argument is a function that throws away the element itself,
then concatenates the texts that were computed for its contents, and returns the
concatenation. The output is identical to that of untag_html().

30 Recursion and Callbacks

Suppose we want a document summarizer that prints out the text that is
inside of <h1> tags and throws away everything else:

sub print_if_h1tag {

my $element = shift;

my $text = join '', @_;

print $text if $element->{_tag} eq 'h1';

return $text;

}

walk_html($tree, sub { $_[0] }, \&print_if_h1tag);

This is essentially the same as untag_html(), except that when the element func-
tion sees that it is processing an <h1> element, it prints out the untagged text.

If we want the function to return the header text instead of printing it out,
we have to get a little trickier. Consider an example like this:

<h1>Junior</h1>

Is a naughty boy.

We would like to throw away the text Is a naughty boy, so that it doesn’t appear
in the result. But to walk_html(), it is just another plain text item, which looks
exactly the same as Junior, which we don’t want to throw away. It might seem
that we should simply throw away everything that appears inside a non-header
tag, but that doesn’t work:

<h1>The story of Junior</h1>

We mustn’t throw away Junior here, just because he’s inside a tag, because
that tag is itself inside an <h1> tag, and we want to keep it.

We could solve this problem by passing information about the current tag
context from each invocation of walk_html() to the next, but it turns out to be
simpler to pass information back the other way. Each text in the file is either a
“keeper,” because we know it’s inside an <h1> element, or a “maybe,” because
we don’t. Whenever we process an <h1> element, we’ll promote all the “maybes”
that it contains to “keepers.” At the end, we’ll print the keepers and throw away
the maybes:

@tagged_texts = walk_html($tree, sub { ['MAYBE', $_[0]] },CODE LIBRARY
extract-headers \&promote_if_h1tag);

sub promote_if_h1tag {

. 31

my $element = shift;

if ($element->{_tag} eq 'h1') {

return ['KEEPER', join '', map {$_->[1]} @_];

} else {

return @_;

}

}

The return value from walk_html() will be a list of labeled text items. Each text
item is an anonymous array whose first element is either MAYBE or KEEPER, and
whose second item is a string. The plain text function simply labels its argument
as a MAYBE. For the string Junior, it returns the labeled item ['MAYBE', 'Junior'];
for the string Is a naughty boy., it returns ['MAYBE', 'Is a naughty boy.'].

The element function is more interesting. It gets an element and a list of
labeled text items. If the element represents an <h1> tag, the function extracts
all the texts from its other arguments, joins them together, and labels the result
as a KEEPER. If the element is some other kind, the function returns its tagged
texts unchanged. These texts will be inserted into the list of labeled texts that are
passed to the element function call for the element that is one level up; compare
this with the final example of dir_walk() in Section 1.5, which returned a list of
filenames in a similar way.

Since the final return value from walk_html() is a list of labeled texts, we
need to filter them and throw away the ones that are still marked MAYBE. This final
pass is unavoidable. Since the function treats an untagged text item differently
at the top level than it does when it is embedded inside an <h1> tag, there must
be some part of the process that understands when something is at the top level.
walk_html() can’t do that because it does the same thing at every level. So we
must build one final function to handle the top-level processing:

sub extract_headers {

my $tree = shift;

my @tagged_texts = walk_html($tree, sub { ['MAYBE', $_[0]] },

\&promote_if_h1tag);

my @keepers = grep { $_->[0] eq 'KEEPER'} @tagged_texts;

my @keeper_text = map { $_->[1] } @keepers;

my $header_text = join '', @keeper_text;

return $header_text;

}

Or we could write it more compactly:

sub extract_headers {

my $tree = shift;

32 Recursion and Callbacks

my @tagged_texts = walk_html($tree, sub { ['MAYBE', $_[0]] },

\&promote_if_h1tag);

join '', map { $_->[1] } grep { $_->[0] eq 'KEEPER'} @tagged_texts;

}

1.7.1 More Flexible Selection

We just saw how to extract all the <h1>-tagged text in an HTML document. The
essential procedure was promote_if_h1tag(). But we might come back next time
and want to extract a more detailed summary, which included all the text from
<h1>, <h2>, <h3>, and any other <h> tags present. To get this, we’d need to make
a small change to promote_if_h1tag() and turn it into a new function:

sub promote_if_h1tag {

my $element = shift;

if ($element->{_tag} =˜ /∧h\d+$/) {

return ['KEEPER', join '', map {$_->[1]} @_];

} else {

return @_;

}

}

But if promote_if_h1tag is more generally useful than we first realized, it will be a
good idea to factor out the generally useful part. We can do that by parametrizing
the part that varies:

sub promote_if {CODE LIBRARY
promote-if my $is_interesting = shift;

my $element = shift;

if ($is_interesting->($element->{_tag}) {

return ['KEEPER', join '', map {$_->[1]} @_];

} else {

return @_;

}

}

Now instead of writing a special function, promote_if_h1tag(), we can express
the same behavior as a special case of promote_if(). Instead of the following:

my @tagged_texts = walk_html($tree, sub { ['maybe', $_[0]] },

\&promote_if_h1tag);

. 33

we can use this:

my @tagged_texts = walk_html($tree,

sub { ['maybe', $_[0]] },

sub { promote_if(

sub { $_[0] eq 'h1'},

$_[0])

});

We’ll see a tidier way to do this in Chapter 7.

1.8

Sometimes a problem appears to be naturally recursive, and then the recursive
solution is grossly inefficient. A very simple example arises when you want to
compute Fibonacci numbers. This is a rather unrealistic example, but it has the
benefit of being very simple. We’ll see a more practical example of the same thing
in Section 3.7.

1.8.1 Fibonacci Numbers

Fibonacci numbers are named for Leonardo of Pisa, whose nickname was
Fibonacci, who discussed them in the 13th century in connection with a
mathematical problem about rabbits. Initially, you have one pair of baby rabbits.
Baby rabbits grow to adults in one month, and the following month they produce
a new pair of baby rabbits, making two pairs:

Pairs of Pairs of Total
Month baby rabbits adult rabbits pairs

1 1 0 1
2 0 1 1
3 1 1 2

The following month, the baby rabbits grow up and the adults produce a new
pair of babies:

4 1 2 3

The month after that, the babies grow up, and the two pairs of adults each
produce a new pair of babies:

5 2 3 5

34 Recursion and Callbacks

Assuming no rabbits die, and rabbit production continues, how many pairs of
rabbits are there in each month?

Let A(n) be the number of pairs of adults alive in month n and B(n) be the
number of pairs of babies alive in month n. The total number of pairs of rabbits
alive in month n, which we’ll call T(n), is therefore A(n) + B(n):

T (n) = A(n) + B(n)

It’s not hard to see that the number of baby rabbits in one month is equal to the
number of adult rabbits the previous month, because each pair of adults gives
birth to one pair of babies. In symbols, this is B(n) = A(n −1). Substituting into
our formula, we have:

T (n) = A(n) + A(n − 1)

Each month the number of adult rabbits is equal to the total number of
rabbits from the previous month, because the babies from the previous month
grow up and the adults from the previous month are still alive. In symbols, this
is A(n) = T(n − 1). Substituting into the previous equation, we get:

T (n) = T (n − 1) + T (n − 2)

So the total number of rabbits in month n is the sum of the number of rabbits
in months n − 1 and n − 2. Armed with this formula, we can write down the
function to compute the Fibonacci numbers:

Compute the number of pairs of rabbits alive in month nCODE LIBRARY
fib

sub fib {

my ($month) = @_;

if ($month < 2) { 1 }

else {

fib($month-1) + fib($month-2);

}

}

. 35

This is perfectly straightforward, but it has a problem: except for small arguments,
it takes forever.4 If you ask for fib(25), for example, it needs to make recursive
calls to compute fib(24) and fib(23). But the call to fib(24) also makes a
recursive call to fib(23), as well as another to compute fib(22). Both calls to
fib(23) will also call fib(22), for a total of three times. It turns out that fib(21)
is computed 5 times, fib(20) is computed 8 times, and fib(19) is computed
13 times.

All this computing and recomputing has a heavy price. On my small com-
puter, it takes about four seconds to compute fib(25); it makes 242,785 recursive
calls while doing so. It takes about 6.5 seconds to compute fib(26), and makes
392,835 recursive calls, and about 10.5 seconds to make the 635,621 recursive
calls for fib(27). It takes as long to compute fib(27) as to compute fib(25) and
fib(26) put together, and so the running time of the function increases rapidly,
more than doubling every time the argument increases by 2.5

The running time blows up really fast, and it’s all caused by our repeated
computation of things that we already computed. Recursive functions occasion-
ally have this problem, but there’s an easy solution for it, which we’ll see in
Chapter 3.

1.8.2 Partitioning

Fibonacci numbers are rather abstruse, and it’s hard to find simple realistic
examples of programs that need to compute them.

Here’s a somewhat more realistic example. We have some valuable items,
which we’ll call “treasures,” and we want to divide them evenly between two
people. We know the value of each item, and we would like to ensure that both
people get collections of items whose total value is the same. Or, to recast the
problem in a more mundane light: we know the weight of each of the various
groceries you bought today, and since you’re going to carry them home with one
bag in each hand, you want to distribute the weight evenly.

To convince yourself that this can be a tricky problem, try dividing up a set
of ten items that have these dollar values:

$9, $12, $14, $17, $23, $32, $34, $40, $42, and $49

4 One of the technical reviewers objected that this was an exaggeration, and it is. But I estimate that
calculating fib(100) by this method would take about 2,241,937 billion billion years, which is
close enough.

5 In fact, each increase of 2 in the argument increases the running time by a factor of about 2.62.

36 Recursion and Callbacks

Since the total value of the items is $272, each person will have to receive items
totalling $136. Then try:

$9, $12, $14, $17, $23, $32, $34, $40, $38, and $49

Here I replaced the $42 item with a $38 item, so each person will have to receive
items totalling $134.

This problem is called the partition problem. We’ll generalize the problem a
little: instead of trying to divide a list of treasures into two equal parts, we’ll try
to find some share of the treasures whose total value is a given target amount.
Finding an even division of the treasures is the same as finding a share whose
value is half of the total value of all the treasures; then the other share is the rest
of the treasures, whose total value is the same.

If there is no share of treasures that totals the target amount, our function
will return undef:

sub find_share {CODE LIBRARY
find-share my ($target, $treasures) = @_;

return [] if $target == 0;

return if $target < 0 || @$treasures == 0;

We take care of some trivial cases first. If the target amount is exactly zero, then
it’s easy to produce a list of treasures that total the target amount: the empty list
is sure to have value zero, so we return that right away.

If the target amount is less than zero, we can’t possibly hit it, because treasures
are assumed to have positive value. In this case no solution can be found and the
function can immediately return failure. If there are no treasures, we know we
can’t make the target, since we already know the target is larger than zero; we fail
immediately.

Otherwise, the target amount is positive, and we will have to do some real
work:

my ($first, @rest) = @$treasures;

my $solution = find_share($target-$first, \@rest);

return [$first, @$solution] if $solution;

return find_share($target , \@rest);

}

Here we copy the list of treasures, and then remove the first treasure from the list.
This is because we’re going to consider the simpler problem of how to divide up
the treasures without the first treasure. There are two possible divisions: either
this first treasure is in the share we’re computing, or it isn’t. If it is, then we

. 37

have to find a subset of the rest of the treasures whose total value is $target -

$first. If it isn’t, then we have to find a subset of the rest of the treasures whose
total value is $target. The rest of the code makes recursive calls to find_share

to investigate these two cases. If the first one works out, the function returns a
solution that includes the first treasure; if the second one works out, it returns a
solution that omits the first treasure; if neither works out, it returns undef.

Here’s a trace of a sample run. We’ll call find_share(5, [1, 2, 4, 8]):

Total Remaining
Share so far so far Target treasures

0 5 1 2 4 8

None of the trivial cases apply — the target is neither negative nor zero, and the
remaining treasure list is not empty — so the function tries allocating the first
item, 1, to the share; it then looks for some set of the remaining items that can
be made to add up to 4:

1 1 4 2 4 8

The function will continue investigating this situation until it is forced to give up.
The function then allocates the first remaining item, 2, toward the share of

4, and makes a recursive call to find some set of the last 2 elements that add
up to 2:

1 2 3 2 4 8

Let’s call this “situation a.” The function will continue investigating this situation
until it concludes that situation a is hopeless. It tries allocating the 4 to the share,
but that overshoots the target total:

1 2 4 7 −2 8

so it backs up and tries continuing from situation a without allocating the 4 to
the share:

1 2 3 2 8

The share is still wanting, so the function allocates the next item, 8, to the
share, which obviously overshoots:

1 2 8 11 −6

Here we have $target < 0, so the function fails, and tries omitting 8 instead.
This doesn’t work either, as it leaves the share short by 2 of the target, with no

38 Recursion and Callbacks

items left to allocate:

Total Remaining
Share so far so far Target treasures

1 2 3 2

This is the if (@$treasures == 0) { return undef } case.
The function has tried every possible way of making situation a work; they

all failed. It concludes that allocating both 1 and 2 to the share doesn’t work, and
backs up and tries omitting 2 instead:

1 1 4 4 8

It now tries allocating 4 to the share:

1 4 5 0 8

Now the function has $target == 0, so it returns success. The allocated treasures
are 1 and 4, which add up to the target 5.

The idea of ignoring the first treasure and looking for a solution among the
remaining treasures, thus reducing the problem to a simpler case, is natural. A
solution without recursion would probably end up duplicating the underlying
machinery of the recursive solution, and simulating the behavior of the function-
call stack manually.

Now solving the partition problem is easy; it’s a call to find_share(), which
finds the first share, and then some extra work to compute the elements of the
original array that are not included in the first share:

sub partition {CODE LIBRARY
partition my $total = 0;

my $share_2;

for my $treasure (@_) {

$total += $treasure;

}

my $share_1 = find_share($total/2, [@_]);

return unless defined $share_1;

First the function computes the total value of all the treasures. Then it asks
find_share() to compute a subset of the original treasures whose total value
is exactly half. If find_share() returns an undefined value, there was no equal
division, so partition() returns failure immediately. Otherwise, it will set about

. 39

computing the list of treasures that are not in $share_1, and this will be the
second share:

my %in_share_1;

for my $treasure (@$share_1) {

++$in_share_1{$treasure};

}

for my $treasure (@_) {

if ($in_share_1{$treasure}) {

--$in_share_1{$treasure};

} else {

push @$share_2, $treasure;

}

}

The function uses a hash to count up the number of occurrences of each value
in the first share, and then looks at the original list of treasures one at a time. If
it saw that a treasure was in the first share, it checks it off; otherwise, it put the
treasure into the list of treasures that make up share 2.

return ($share_1, $share_2);

}

When it’s done, it returns the two lists of treasures.
There’s a lot of code here, but it mostly has to do with splitting up a list of

numbers. The key line is the call to find_share(), which actually computes the
solution; this is $share_1. The rest of the code is all about producing a list of
treasures that aren’t in $share_1; this is $share_2.

The find_share function, however, has a problem: it takes much too long
to run, especially if there is no solution. It has essentially the same problem as
fib did: it repeats the same work over and over. For example, suppose it is trying
to find a division of 1 2 3 4 5 6 7 with target sum 14. It might be investigating
shares that contain 1 and 3, and then look to see if it can make 5 6 7 hit the
target sum of 10. It can’t, so it will look for other solutions. Later on, it might
investigate shares that contain 4, and again look to see if it can make 5 6 7 hit
the target sum of 10. This is a waste of time; find_share should remember that
5 6 7 cannot hit a target sum of 10 from the first time it investigated that.

We will see in Chapter 3 how to fix this.

