
       2
 

In Chapter 1, we saw how to make functions more flexible by parametrizing
their behaviors in terms of other functions. For example, instead of hardwiring
the hanoi() function to print a certain message every time it wanted to move
a disk, we had it call a secondary function that was passed in from outside.
By supplying an appropriate secondary function, we could make hanoi() print
out a list of instructions, or check its own moves, or generate a graphic display,
without recoding the basic algorithm. Similarly, we were able to abstract the
directory-walking behavior away from the file-size-computing behavior of our
total_size() function to get a more useful and generally applicable dir_walk()

function that could be used to do all sorts of different things.
To abstract behavior out of hanoi() and dir_walk(), we made use of code

references. We passed hanoi() and dir_walk() additional functions as arguments,
effectively treating the secondary functions as pieces of data. Code references
make this possible.

Now we’ll leave recursion for a while and go off in a different direction that
shows another use of code references.

2.1   

Let’s suppose that we have an application that reads in a configuration file in the
following format:

VERBOSITY 8

CHDIR /usr/local/app

41

42         Dispatch Tables

LOGFILE log

... ...

We would like to read in this configuration file and take an appropriate action
for each directive. For example, for the VERBOSITY directive, we just want to set
a global variable. But for the LOGFILE directive, we want to immediately redirect
the program’s diagnostic messages to the specified file. For CHDIR we might like
the program to chdir to the specified directory so that subsequent file operations
are relative to the new directory. This means that in the preceding example the
LOGFILE is /usr/local/app/log, and not the log file in whatever directory the
user happened to be in at the time the program was run.

Many programmers would see this problem and immediately envision
a function with a giant if-else switch in it, perhaps something like
this:

sub read_config {

my ($filename) = @_;

open my($CF), $filename or return; # Failure

while (<$CF>) {

chomp;

my ($directive, $rest) = split /\s+/, $_, 2;

if ($directive eq 'CHDIR') {

chdir($rest) or die "Couldn’t chdir to '$rest': $!; aborting";

} elsif ($directive eq 'LOGFILE') {

open STDERR, ">>", $rest

or die "Couldn’t open log file '$rest': $!; aborting";

} elsif ($directive eq 'VERBOSITY') {

$VERBOSITY = $rest;

} elsif ($directive eq ...) {

...

} ...

} else {

die "Unrecognized directive $directive on line $. of $filename; aborting";

}

}

return 1; # Success

}

.                          43

This function is in two parts. The first part opens the file and reads lines from it
one at a time. It separates each line into a $directive part (the first word) and
a $rest part (the rest). The $rest part contains the arguments to the directive,
such as the name of the log file to open when supplied with the LOGFILE directive.
The second part of the function is a big if-else tree that checks the $directive

variable to see which directive it is, and aborts the program if the directive is
unrecognized.

This sort of function can get very large, because of the many alternatives in
the if-else tree. Each time someone wants to add another directive, they change
the function by adding another elsif clause. The contents of the branches of the
if-else tree don’t have much to do with each other, except for the inessential
fact that they’re all configurable. Such a function violates an important law of
programming: Related things should be kept together; unrelated things should
be separated.

Following this law suggests a different structure for this function: The part
that reads and parses the file should be separate from the actions that are per-
formed when the configuration directives are recognized. Moreover, the code for
implementing the various unrelated directives should not be lumped together
into a single function.

2.1.1 Table-Driven Configuration

We can do better by separating the code for opening, reading, and parsing
the configuration file from the unrelated segments that implement the various
directives. Dividing the program into two halves like this will give us bet-
ter flexibility to modify each of the halves, and to separate the code for the
directives.

Here’s a replacement for read_config():

sub read_config { CODE LIBRARY
rdconfig-tabularmy ($filename, $actions) = @_;

open my($CF), $filename or return; # Failure

while (<$CF>) {

chomp;

my ($directive, $rest) = split /\s+/, $_, 2;

if (exists $actions->{$directive}) {

$actions->{$directive}->($rest);

} else {

44         Dispatch Tables

die "Unrecognized directive $directive on line $. of $filename; aborting";

}

}

return 1; # Success

}

We open, read, and parse the configuration file exactly as before. But we dispense
with the giant if-else switch. Instead, this version of read_config receives an
extra argument, $actions, which is a table of actions; each time read_config()

reads a configuration directive, it will perform one of these actions. This table is
called a dispatch table, because it contains the functions to which read_config()

will dispatch control as it reads the file. The $rest variable has the same meaning
as before, but now it is passed to the appropriate action function as an argument.

A typical dispatch table might look like this:

$dispatch_table =

{ CHDIR => \&change_dir,

LOGFILE => \&open_log_file,

VERBOSITY => \&set_verbosity,

... => ...,

};

The dispatch table is a hash, whose keys (generically called tags) are directive
names, and whose values are actions, references to subroutines that are invoked
when the appropriate directive name is recognized. Action functions expect to
receive the $rest variable as an argument; typical actions look like these:

sub change_dir {

my ($dir) = @_;

chdir($dir)

or die "Couldn’t chdir to '$dir': $!; aborting";

}

sub open_log_file {

open STDERR, ">>", $_[0]

or die "Couldn’t open log file '$_[0]': $!; aborting";

}

sub set_verbosity {

$VERBOSITY = shift

}

.                          45

If the actions are small, we can put them directly into the dispatch table:

$dispatch_table =

{ CHDIR => sub { my ($dir) = @_;

chdir($dir) or

die "Couldn’t chdir to '$dir': $!; aborting";

},

LOGFILE => sub { open STDERR, ">>", $_[0] or

die "Couldn’t open log file '$_[0]': $!; aborting";

},

VERBOSITY => sub { $VERBOSITY = shift },

... => ...,

};

By switching to a dispatch table, we’ve eliminated the huge if-else tree, but in
return we’ve gotten a table that is only a little smaller. That might not seem like
a big win. But the table provides several benefits.

2.1.2 Advantages of Dispatch Tables

The dispatch table is data, instead of code, so it can be modified at run time.
You can insert new directives into the table whenever you want to. Suppose the
table has:

'DEFINE' => \&define_config_directive,

where define_config_directive() is:

sub define_config_directive { CODE LIBRARY
def-conf-dirmy $rest = shift;

$rest =˜ s/∧\s+//;
my ($new_directive, $def_txt) = split /\s+/, $rest, 2;

if (exists $CONFIG_DIRECTIVE_TABLE{$new_directive}) {

warn "$new_directive already defined; skipping.\n";

return;

}

my $def = eval "sub { $def_txt }";

46         Dispatch Tables

if (not defined $def) {

warn "Could not compile definition for '$new_directive': $@; skipping.\n";

return;

}

$CONFIG_DIRECTIVE_TABLE{$new_directive} = $def;

}

The configurator now accepts directives like this:

DEFINE HOME chdir('/usr/local/app');

define_config_directive() puts HOME into $new_directive and
chdir('/usr/local/app'); into $def_txt. It uses eval to compile the defini-
tion text into a subroutine, and installs the new subroutine into a master
configuration table, %CONFIG_DIRECTIVE_TABLE, using HOME as the key. If
%CONFIG_DIRECTIVE_TABLE were in fact the dispatch table that was passed to
read_config() in the first place, then read_config() will see the new definition,
and will have an action associated with HOME if it sees the HOME directive on a
later line of the input file. Now a config file can say:

DEFINE HOME chdir('/usr/local/app');

CHDIR /some/directory

...

HOME

The directives in ... are invoked in the directory /some/directory. When the
processor reaches HOME, it returns to its home directory. We can also define a more
robust version of the same thing:

DEFINE PUSHDIR use Cwd; push @dirs, cwd(); chdir($_[0])

DEFINE POPDIR chdir(pop @dirs)

PUSHDIR dir uses the cwd() function provided by the standard Cwd module to
figure out the name of the current directory. It saves the name of the current
directory in the variable @dirs, and then changes to dir. POPDIR undoes the effect
of the last PUSHDIR:

PUSHDIR /tmp

A

PUSHDIR /usr/local/app

.                          47

B

POPDIR

C

POPDIR

The program changes to /tmp, then executes directive A. Then it changes to
/usr/local/app and executes directive B. The following POPDIR returns the pro-
gram to /tmp, where it executes directive C; finally the second POPDIR returns it
to wherever it started out.

In order for DEFINE to modify the configuration table, we had to store it
in a global variable. It’s probably better if we pass the table to define_config_

directive explicitly. To do that we need to make a small change to read_config:

sub read_config { CODE LIBRARY
rdconfig-tableargmy ($filename, $actions) = @_;

open my($CF), $filename or return; # Failure

while (<$CF>) {

chomp;

my ($directive, $rest) = split /\s+/, $_, 2;

if (exists $actions->{$directive}) {

$actions->{$directive}->($rest, $actions);

} else {

die "Unrecognized directive $directive on line $. of $filename; aborting";

}

}

return 1; # Success

}

Now define_config_directive can look like this:

sub define_config_directive { CODE LIBRARY
def-cdir-tableargmy ($rest, $dispatch_table) = @_;

$rest =˜ s/∧\s+//;
my ($new_directive, $def_txt) = split /\s+/, $rest, 2;

if (exists $dispatch_table->{$new_directive}) {

warn "$new_directive already defined; skipping.\n";

return;

}

my $def = eval "sub { $def_txt }";

48         Dispatch Tables

if (not defined $def) {

warn "Could not compile definition for '$new_directive': $@; skipping.\n";

return;

}

$dispatch_table->{$new_directive} = $def;

}

With this change, we can add a really useful configuration directive:

DEFINE INCLUDE read_config(@_);

This installs a new entry into the dispatch table that looks like this:

INCLUDE => sub { read_config(@_) }

Now, when we write this in the configuration file:

INCLUDE extra.conf

the main read_config() will invoke the action, passing it two arguments. The
first argument will be the $rest from the configuration file; in this case the
filename extra.conf. The second argument to the action will be the dispatch
table again. These two arguments will be passed directly to a recursive call of
read_config. read_config will read extra.conf, and when it’s finished it will
return control to the main invocation of read_config, which will continue with
the main configuration file, picking up where it left off.

In order for the recursive call to work properly, read_config() must be
reentrant. The easiest way to break reentrancy is to use a global variable, for
example by using a global filehandle instead of the lexical filehandle we did use.
If we had used a global filehandle, the recursive call to read_config()would open
extra.conf with the same filehandle that was being used by the main invocation;
this would close the main configuration file. When the recursive call returned,
read_config() would be unable to read the rest of the main file, because its
filehandle would have been closed.

The INCLUDE definition was very simple and very useful. But it was also inge-
nious, and it might not have occurred to us when we were writing read_config.
It would have been easy to say “Oh, read_config doesn’t need to be reentrant.”
But if we had written read_config in a nonreentrant way, the useful INCLUDE def-
inition wouldn’t have worked. There’s an important lesson to learn here: make
functions reentrant by default, because sometimes the usefulness of being able
to call a function recursively will be a surprise.

.                          49

Reentrant functions exhibit a simpler and more predictable behavior than
nonreentrant functions. They are more flexible because they can be called recur-
sively. Our INCLUDE example shows that we might not always anticipate all the
reasons why someone might want to invoke a function recursively. It’s better and
safer to make everything reentrant if possible.

Another advantage of the dispatch table over hardwired code in
read_config() is that we can use the same read_config function to process
two unrelated files that have totally different directives, just by passing a differ-
ent dispatch table to read_config() each time. We can put the program into
“beginner mode” by passing a stripped-down dispatch table to read_config().
Or we can re-use read_config() to process a different file with the same basic
syntax by passing it a table with a different set of directives; an example of this
appears in Section 2.1.4.

2.1.3 Dispatch Table Strategies

In our implementation of PUSHDIR and POPDIR, the action functions used a global
variable, @dirs, to maintain the stack of pushed directories. This is unfortu-
nate. We can get around this, and make the system more flexible, by having
read_config() support a user parameter. This is an argument, supplied by the
caller of read_config(), which is passed verbatim to the actions:

sub read_config { CODE LIBRARY
rdconfig-uparammy ($filename, $actions, $user_param) = @_;

open my($CF), $filename or return; # Failure

while (<$CF>) {

my ($directive, $rest) = split /\s+/, $_, 2;

if (exists $actions->{$directive}) {

$actions->{$directive}->($rest, $user_param, $actions);

} else {

die "Unrecognized directive $directive on line $. of $filename; aborting";

}

}

return 1; # Success

}

This eliminates the global variable, because we can now define PUSHDIR and
POPDIR like this:

DEFINE PUSHDIR use Cwd; push @{$_[1]}, cwd(); chdir($_[0])

DEFINE POPDIR chdir(pop @{$_[1])

50         Dispatch Tables

The $_[1] parameter refers to the user-parameter argument that is passed to
read_config(). If read_config() is called with:

read_config($filename, $dispatch_table, \@dirs);

then PUSHDIR and POPDIR will use the array @dirs as their stack; if it is called with:

read_config($filename, $dispatch_table, []);

then they will use a fresh, anonymous array as the stack.
It’s often useful to pass an action callback the name of the tag on whose

behalf it was invoked. To do this, we change read_config() like this:

sub read_config {CODE LIBRARY
rdconfig-tagarg my ($filename, $actions, $user_param) = @_;

open my($CF), $filename or return; # Failure

while (<$CF>) {

my ($directive, $rest) = split /\s+/, $_, 2;

if (exists $actions->{$directive}) {

$actions->{$directive}->($directive, $rest, $actions, $user_param);

} else {

die "Unrecognized directive $directive on line $. of $filename; aborting";

}

}

return 1; # Success

}

Why is this useful? Consider the action we defined for the VERBOSITY

directive:

VERBOSITY => sub { $VERBOSITY = shift },

It’s easy to imagine that there might be several configuration directives that all
follow this general pattern:

VERBOSITY => sub { $VERBOSITY = shift },

TABLESIZE => sub { $TABLESIZE = shift },

PERLPATH => sub { $PERLPATH = shift },

... etc ...

We would like to merge the three similar actions into a single function that does
the work of all three. To do that, the function needs to know the name of the

.                          51

directive so that it can set the appropriate global variable:

VERBOSITY => \&set_var,

TABLESIZE => \&set_var,

PERLPATH => \&set_var,

... etc ...

sub set_var {

my ($var, $val) = @_;

$$var = $val;

}

Or, if you don’t like a bunch of global variables running around loose, you can
store configuration information in a hash, and pass a reference to the hash as the
user parameter:

sub set_var {

my ($var, $val, undef, $config_hash) = @_;

$config_hash->{$var} = $val;

}

In this example, not much is saved, because the action is so simple. But there
might be several configuration directives that need to share a more complicated
function. Here’s a slightly more complicated example:

sub open_input_file {

my ($handle, $filename) = @_;

unless (open $handle, $filename) {

warn "Couldn’t open $handle file '$filename': $!; ignoring.\n";

}

}

This open_input_file() function can be shared by many configuration directives.
For example, suppose a program has three sources of input: a history file, a
template file, and a pattern file. We would like the locations of all three files to be
configurable in the configuration file; this requires three entries in the dispatch
table. But the three entries can all share the same open_input_file() function:

...

HISTORY => \&open_input_file,

TEMPLATE => \&open_input_file,

52         Dispatch Tables

PATTERN => \&open_input_file,

...

Now suppose the configuration file says:

HISTORY /usr/local/app/history

TEMPLATE /usr/local/app/templates/main.tmpl

PATTERN /home/bill/app/patterns/default.pat

read_config() will see the first line and dispatch to the open_input_file()

function, passing it the argument list ('HISTORY', '/usr/local/app/history').
open_input_file() will take the HISTORY argument as a filehandle name, and
open the HISTORY filehandle to come from the /usr/local/app/history file. On
the second line, read_config()will dispatch to the open_input_file() again, this
time passing it ('TEMPLATE', '/usr/local/app/templates/main.tmpl'). This
time, open_input_file()will open the TEMPLATEfilehandle instead of the HISTORY
filehandle.

2.1.4 Default Actions

Our example read_config() function dies when it encounters an unrecognized
directive. This behavior is hardwired in. It would be better if the dispatch table
itself carried around the information about what to do for an unrecognized
directive. It’s easy to add this feature:

sub read_config {CODE LIBRARY
rdconfig-default my ($filename, $actions, $userparam) = @_;

open my($CF), $filename or return; # Failure

while (<$CF>) {

chomp;

my ($directive, $rest) = split /\s+/, $_, 2;

my $action = $actions->{$directive} || $actions->{_DEFAULT_};

if ($action) {

$action->($directive, $rest, $actions, $userparam);

} else {

die "Unrecognized directive $directive on line $. of $filename; aborting";

}

}

return 1; # Success

}

.                          53

Here the function looks in the action table for the specified directive; if it isn’t
there, if looks for a _DEFAULT_ action, and dies only if there is no default specified
in the dispatch table. Here’s a typical _DEFAULT_ action:

sub no_such_directive {

my ($directive) = @_;

warn "Unrecognized directive $directive at line $.; ignoring.\n";

}

Since the directive name is passed as the first argument to the action function, the
default action knows what unrecognized directive it was called on behalf of. Since
the no_such_directive() function also gets passed the entire dispatch table, it
can extract the real directive names and do some pattern matching to figure out
what might have been meant. Here no_such_directive() uses a hypothetical
score_match() function to decide which table entries are good matches for the
unrecognized directive:

sub no_such_directive {

my ($bad, $rest, $table) = @_;

my ($best_match, $best_score);

for my $good (keys %$table) {

my $score = score_match($bad, $good);

if ($score > $best_score) {

$best_score = $score;

$best_match = $good;

}

}

warn "Unrecognized directive $bad at line $.;\n";

warn "\t(perhaps you meant $best_match?)\n";

}

The system we have now has only a little code, but it’s extremely flexible. Suppose
our program is also going to read a list of user IDs and email addresses in the
following format:

fred fred@example.com

bill bvoehno@plover.com

warez warez-admin@plover.com

... ...

54         Dispatch Tables

We can re-use read_config() and have it read and parse this file, by supplying
the appropriate dispatch table:

$address_actions =

{ _DEFAULT_ => sub { my ($id, $addr, $act, $aref) = @_;

push @$aref, [$id, $addr];

},

};

read_config($ADDRESS_FILE, $address_actions, \@address_array);

Here we’ve given read_config() a very small dispatch table; all it has is a
DEFAULT entry. read_config()will call this default entry once for each line in the
address file, passing it the “directive name” (which is actually the user ID) and the
address (which is the $rest value). The default action will take this information
and add it to @address_array, which can be used later by the program.

2.2 

Let’s get away from the configuration file example for a while. Obviously, dis-
patch tables are going to make sense in many similar situations. For example, a
conversational program that must process commands from a user can use a dis-
patch table to dispatch the user’s commands. We’ll look at a different example, a
very simple calculator.

The input to this calculator is a string that contains an arithmetic expression
in reverse Polish notation (RPN). Conventional arithmetic notation is ambiguous.
If you write 2+3 ·4, it’s not immediately clear whether we do the addition or the
multiplication first. We have to have special conventions to say that multiplication
always happens before addition, or we have to disambiguate the expression by
inserting parentheses, for example, (2 + 3) · 4.

Reverse Polish notation solves the problem in a different way. Instead of
putting the operator symbols in between the arguments that they operate on,
RPN puts the operators after their arguments. For example, instead of 2 + 3 we
write 2 3 +. Instead of (2 + 3) · 4, we write 2 3 + 4 *. The + follows 2 and 3, so
the 2 and 3 are added; the * says to multiply the two preceding expressions, which
are 2 3 + and 4. To express 2 + (3 · 4) in RPN, we would write 2 3 4 * +. The
+ applies to the two preceding arguments; the first of these is 2 and the second
is 3 4 *. Because the operator always follows its arguments, such expressions are
said to be in postfix form; this is to contrast them with the usual form, where the
operators are in between their arguments, which is called infix form.

.           55

It’s easy to compute the value of an expression in RPN. To do this, we
maintain a stack, and read the expression from left to right. When we see a
number, we push it on the stack. When we see an operator, we pop the top two
elements off the stack, operate on them, and push the result back on the stack.
For example, to evaluate 2 3 + 4 *, we first push 2 and then 3, and then when
we see the + we pop them off and push back the sum, 5. Then we push 4 on top
of the 5, and then the * tells us to pop the 4 and the 5 and push back the final
answer, 20. To evaluate 2 3 4 * + we push 2, then 3, then 4. The * tells us to
pop back the 3 and the 4 and push the product 12; the + tells us to pop the 12
and the 2 and push the sum, 14, which is the final answer.

Here’s a small calculator program that evaluates the RPN expression supplied
in its command-line argument:

my $result = evaluate($ARGV[0]); CODE LIBRARY
rpn-ifelseprint "Result: $result\n";

sub evaluate {

my @stack;

my ($expr) = @_;

my @tokens = split /\s+/, $expr;

for my $token (@tokens) {

if ($token =˜ /∧\d+$/) { # It's a number

push @stack, $token;

} elsif ($token eq '+') {

push @stack, pop(@stack) + pop(@stack);

} elsif ($token eq '-') {

my $s = pop(@stack);

push @stack, pop(@stack) - $s

} elsif ($token eq '*') {

push @stack, pop(@stack) * pop(@stack);

} elsif ($token eq '/') {

my $s = pop(@stack);

push @stack, pop(@stack) / $s

} else {

die "Unrecognized token '$token'; aborting";

}

}

return pop(@stack);

}

The function splits the argument on whitespace into tokens, which are the smallest
meaningful portions of the input. Then the function loops over the tokens one

56         Dispatch Tables

at a time, from left to right. If a token matches /∧\d+$/, then it is a number, so
the function pushes it onto the stack. Otherwise, it’s an operator, so the function
pops two values off the stack, operates on them, and pushes the result back onto
the stack. The auxiliary $s variable in the code for subtraction is there because
5 3 - should yield 2, not −2. If we had used:

push @stack, pop(@stack) - pop(@stack);

then for 5 3 - the first pop would pop the 3, the second would pop the 5, and the
result would have been −2. There is similar code in the division branch for the
same reason. For multiplication and addition, the order of the operands doesn’t
matter.

When the function runs out of tokens, it pops the top value off the stack;
this is the final result. This code ignores the possibility that the stack might finish
with several values; this would mean that the argument contained more than
one expression. 10 2 * 3 4 + leaves 20 and 7 on the stack, in that order. It also
ignores the possibility that the stack might become empty. For example, 2 * and
2 3 + * are invalid expressions, because in each, the * has only one argument
instead of two. In evaluating these, the function finds itself doing an operation
when the stack is empty. It should signal an error in that case, but I omitted the
error handling to keep the example small.

We can make the example simpler and more flexible by replacing the large
if-else switch with a dispatch table:

my @stack;CODE LIBRARY
rpn-table my $actions = {

'+' => sub { push @stack, pop(@stack) + pop(@stack) },

'*' => sub { push @stack, pop(@stack) * pop(@stack) },

'-' => sub { my $s = pop(@stack); push @stack, pop(@stack) - $s },

'/' => sub { my $s = pop(@stack); push @stack, pop(@stack) / $s },

'NUMBER' => sub { push @stack, $_[0] },

'_DEFAULT_' => sub { die "Unrecognized token '$_[0]'; aborting" }

};

my $result = evaluate($ARGV[0], $actions);

print "Result: $result\n";

sub evaluate {

my ($expr, $actions) = @_;

my @tokens = split /\s+/, $expr;

.           57

for my $token (@tokens) {

my $type;

if ($token =˜ /∧\d+$/) { # It’s a number

$type = 'NUMBER';

}

my $action = $actions->{$type}

|| $actions->{$token}

|| $actions->{_DEFAULT_};

$action->($token, $type, $actions);

}

return pop(@stack);

}

The main driver, evaluate(), is now much smaller and more general. It selects
an action based on the token’s “type,” if it has one; otherwise, the action is based
on the value of the token itself, and if there is no such action, a default action
is used. The evaluate() function does a pattern match on the token to try to
determine a token type, and if the token looks like a number, the selected type is
NUMBER. We can add a new operator by adding an entry to the %actions dispatch
table:

...

'sqrt' => sub { push @stack, sqrt(pop(@stack)) },

...

Again, because of the dispatch table construction, we can get a different behavior
from the evaluator by supplying a different dispatch table. Instead of reducing
the expression to a number, the evaluator will compile it into an abstract syntax
tree (AST) if we supply this dispatch table:

my $actions = {

'NUMBER' => sub { push @stack, $_[0] },

'_DEFAULT_' => sub { my $s = pop(@stack);

push @stack,

[$_[0], pop(@stack), $s]

},

};

The result of compiling 2 3 + 4 * is the abstract syntax tree ['*', ['+', 2,

3], 4], which we can also represent as in Figure 2.1.

58         Dispatch Tables

*

+ 4

2 3

 . The AST for the expression 2 3 + 4 *.

This is the most useful internal form for an expression because all the structure
is represented directly. An expression is either a number, or it has an operator
and two operands; the two operands are also expressions. An abstract syntax tree
is either a number, or a list of an operator and two other ASTs. Once we have an
AST, it’s easy to write a function to process it. For example, here is a function to
convert an AST to a string:

sub AST_to_string {CODE LIBRARY
AST-to-string my ($tree) = @_;

if (ref $tree) {

my ($op, $a1, $a2) = @$tree;

my ($s1, $s2) = (AST_to_string($a1),

AST_to_string($a2));

"($s1 $op $s2)";

} else {

$tree;

}

}

Given the tree of Figure 2.1, the AST_to_string() function produces the string
"((2 + 3) * 4)". The function first checks to see if the tree is trivial; if it is not
a reference, then it must be a number, and the string version is just that number.
Otherwise, the string has three parts: an operator symbol, which is stored in
$op, and two arguments, which are ASTs. The function calls itself recursively to
convert the two argument trees to strings $s1 and $s2, and then produces a new
string that has $s1 and $s2 with the appropriate operator symbol in between,
surrounded by parentheses to avoid ambiguity. We have just written a system to
convert postfix expressions to infix expressions, because we can feed the original
postfix expression to evaluate() to generate an AST, and then give the AST to
AST_to_string() to generate an infix expression.

The AST_to_string() function is recursive because the definition of an AST
is recursive; the definition of an AST is recursive because the structure of an
expression is recursive. The structure of AST_to_string() directly reflects the
structure of an expression.

.           59

2.2.1 HTML Processing Revisited

In Chapter 1 we saw walk_html(), a recursive HTML processor. The HTML
processor got two functional arguments: $textfunc, a function to call for a
section of untagged text, and $elementfunc, a function to call for an HTML
element. But “HTML element” is vague because there are many sorts of elements,
and we might want our function to do something different for each kind of
element.

We’ve seen several ways to accomplish this already. The most straightforward
is for the user to simply put a giant if-else switch into $elementfunc. As we’ve
already seen, that has some disadvantages. The user might like to supply a dispatch
table to the $elementfunc instead. The structure of such a dispatch table is easy
to see: the keys of the table will be tag names, and the values will be actions
performed for each kind of element. Instead of supplying a single $elementfunc

that knows how to deal with every possible element, the user will supply a
dispatch table that provides one action for each kind of element, and also a
generic $elementfunc that dispatches the appropriate action.

The $elementfunc might get access to the dispatch table in any of several
ways. The dispatch table might be hardwired into the element function:

sub elementfunc {

my $table = { h1 => sub { shift; my $text = join '', @_;

print $text; return $text ;

}

DEFAULT => sub { shift; my $text = join '', @_;

return $text ;

};

my ($element) = @_;

my $tag = $element->{_tag};

my $action = $table->{$tag} || $table{_DEFAULT_};

return $action->(@_);

}

Alternatively, we could build dispatch table support directly into walk_html(),
so that instead of passing a single $elementfunc, the user passes the dispatch table
directly to walk_html(). In that case, walk_html() would look something like
this:

sub walk_html { CODE LIBRARY
walk-html-dispmy ($html, $textfunc, $elementfunc_table) = @_;

return $textfunc->($html) unless ref $html; # It’s a plain string

60         Dispatch Tables

my ($item, @results);

for $item (@{$html->{_content}}) {

push @results, walk_html($item, $textfunc, $elementfunc_table);

}

my $tag = $html->{_tag};

my $elementfunc = $elementfunc_table->{$tag}

|| $elementfunc_table->{_DEFAULT_}

|| die "No function defined for tag '$tag'";

return $elementfunc->($html, @results);

}

Yet another option is to change walk_html() to pass a user parameter to the
$textfunc and $elementfunc. Then the user could have the dispatch table passed
to the $elementfunc via the user parameter mechanism:

sub walk_html {CODE LIBRARY
walk-html-uparam my ($html, $textfunc, $elementfunc, $userparam) = @_;

return $textfunc->($html, $userparam) unless ref $html;

my ($item, @results);

for $item (@{$html->{_content}}) {

push @results, walk_html($item, $textfunc, $elementfunc, $userparam);

}

return $elementfunc->($html, $userparam, @results);

}

Now it is up to the users to design their $elementfuncs to process the dispatch
table appropriately.

One important and subtle point here: notice that we passed the user param-
eter to the $textfunc as well as to the $elementfunc. If the user parameter is a
tag dispatch table, it is probably not useful to the $textfunc. Why did we pass
it, then? Because it might not be a tag dispatch table; it might be something else.
For example, the user might have called walk_html() like this:

walk_html($html_text,

$textfunc

sub { my ($text, $aref) = @_;

push @$aref, $text },

$elementfunc does nothing

sub { },

.           61

user parameter

\@text_array

);

Now walk_html() will walk the HTML tree and push all the untagged plain text
into the array @text_array. The user parameter is the reference to @text_array;
it is passed to the $textfunc, which pushes the text onto the referred-to array.
The $elementfunc doesn’t use the user parameter at all. Since we, the authors of
walk_html(), don’t know in advance which sort of user parameter the user will
require, we had better pass it to both the $textfunc and the $elementfunc; a
function that doesn’t need the user parameter is free to ignore it.

