
 3

We saw in Section 1.8 that a natural recursive function can sometimes perform
extremely badly. An easy and general solution to many of these performance
problems, as well as some that arise in nonrecursive contexts, is caching.

Let’s consider a program that converts images from one format to another.
Specifically, let’s imagine that the input is in the popular GIF format, and that
the output is something we’re going to send to the printer. The printer is not the
little machine that sits on your desk; it’s a big company with giant printing presses
that will print one million copies of some magazine by Thursday afternoon.

The printer wants the images in a special CMYK format. CMYK stands for
“Cyan-Magenta-Yellow-Black,” which are the four colors of the special printer’s
inks that the printer uses to print the magazines.1 However, the colors in the
GIF image are specified as RGB values, which are the intensities of red, green,
and blue light that will be emitted by our computer monitor when it displays
the image. We need to convert the RGB values that are suitable for the monitor
into CMYK values that are appropriate for printing.

The conversion is just a matter of simple arithmetic:

sub RGB_to_CMYK { CODE LIBRARY
RGB-CMYKmy ($r, $g, $b) = @_;

my ($c, $m, $y) = (255-$r, 255-$g, 255-$b);

my $k = $c < $m ? ($c < $y ? $c : $y)

: ($m < $y ? $m : $y); # Minimum

for ($c, $m, $y) { $_ -= $k }

1 “K” is for “black”; the printers don’t use “B” because “B” is for “blue.”

63

64 Caching and Memoization

[$c, $m, $y, $k];

}

Now we write the rest of the program, which opens the GIF file, reads the pixels
one at a time, calls RGB_to_CMYK() for each pixel, and writes out the resulting
CMYK values in the appropriate format.

There’s a minor problem here. Let’s suppose that the GIF image is 1024
pixels wide and 768 pixels high, for a total of 786,432 pixels. We will have
made 786,432 calls to RGB_to_CMYK(). That seems all right, except for one
thing: Because of the way the GIF format is defined, no GIF image ever contains
more than 256 different colors. That means that at least 786,176 of our 786,432
calls were a waste of time, because we were doing the same computations that
we had already done before. If we could figure out how to save the results of our
RGB_to_CMYK() computations and recover them when appropriate, we might win
back some performance.

In Perl, whenever we consider the problem of checking whether we’ve seen
something already, the solution will almost always involve a hash. This is no
exception. If we can use the RGB value as a hash key, we can make a hash
that records whether we have seen a particular set of RGB values before, and if
so, what the corresponding CMYK value was. Then our program logic will go
something like this: To convert a set of RGB values to a set of CMYK values,
first look up the RGB values in the hash. If they’re not there, do the calculation
as before, store the result in the hash, and return it as usual. If the values are in
the hash, then just get the CMYK values from the hash and return them without
doing the calculation a second time.

The code will look something like this:

my %cache;CODE LIBRARY
RGB-CMYK-caching

sub RGB_to_CMYK {

my ($r, $g, $b) = @_;

my $key = join ',', $r, $g, $b;

return $cache{$key} if exists $cache{$key};

my ($c, $m, $y) = (255-$r, 255-$g, 255-$b);

my $k = $c < $m ? ($c < $y ? $c : $y)

: ($m < $y ? $m : $y); # Minimum

for ($c, $m, $y) { $_ -= $k }

return $cache{$key} = [$c, $m, $y, $k];

}

Suppose we call RGB_to_CMYK() with arguments 128,0,64. The first time we
do this, the function will look in the %cache hash under the key '128,0,64';

. 65

there won’t be anything there, so it will continue through the function, per-
forming the calculation as usual, and, on the last line, store the result into
$cache{'128,0,64'}, and return the result. The second time we call the func-
tion with the same arguments, it computes the same key, and returns the value
of $cache{'128,0,64'} without doing any extra calculation. When we find the
value we need in the cache without further calculation, that is called a cache hit;
when we compute the right key but find that no value is yet cached under that
key, it is called a cache miss.

Of course there’s a possibility that the extra program logic and the hash look-
ups will eat up the gains that we got from avoiding the computation. Whether
this is true depends on how time-consuming the original computation was
and on the likelihood of cache hits. When the original computation takes a
long time, caching is more likely to be a benefit. To be sure, we should run
a careful benchmark of both versions of the function. But to help develop
an intuition for the kinds of tradeoffs to expect, we will look briefly at the
theory.

Suppose the typical call to the real function takes time f. The average time
taken by the memoized version will depend on two additional parameters: K,
the cache management overhead, and h, the probability of getting a cache hit on
any particular call. In the extreme case where we never get a cache hit, h is zero;
as the likelihood of cache hits increases, h approaches 1.

For a memoized function, the average time per call will be at least K, since
every call must check the cache, plus an additional f if there is a cache miss, for
a total of K + (1 − h)f . The unmemoized version of the function, of course,
always takes time f, so the difference is simply hf −K . If K < hf , the memoized
version of the function will be faster than the unmemoized version. To speed up
the memoized version, we can increase the cache hit rate h, or decrease the cache
management overhead K. When f is large, it is easier to achieve K < hf , so
caching is more likely to be effective when the original function takes a long
time to run. In the worst case, we never get any cache hits, and h = 0, so the
“speedup” is actually a slowdown of −K .

3.1

We saw in Section 1.8 that recursive functions sometimes blow up and take much
too long, even on simple inputs, and that the Fibonacci function is an example
of this problem:

Compute the number of pairs of rabbits alive in month n

sub fib {

66 Caching and Memoization

my ($month) = @_;

if ($month < 2) { 1 }

else {

fib($month-1) + fib($month-2);

}

}

As we saw in Section 1.8, this function runs slowly for most arguments, because
it wastes time recomputing results it has already computed. For example, fib(20)
needs to compute fib(19) and fib(18), but fib(19) also computes fib(18), as
well as fib(17), which is also computed once by each of the calls to fib(18).
This is a common problem with recursive functions, and it is fixed by caching.
If we add caching to fib, then instead of recomputing fib(18) over again from
scratch the second time it is needed, fib will simply retrieve the cached result
of the first computation of fib(18). It won’t matter that we try to compute
fib(17) three times or fib(16) five times because the work will be done only
once, and the cached results will be retrieved quickly when they are needed
again.

3.2

The most straightforward way to add caching to a function is to give the function
a private hash. In this example, we could use an array instead of a hash, since the
argument to fib() is always a non-negative integer. But in general, we will need
to use a hash, so that’s what we’ll see here:

Compute the number of pairs of rabbits alive in month nCODE LIBRARY
fib-cached { my %cache;

sub fib {

my ($month) = @_;

unless (exists $cache{$month}) {

if ($month < 2) { $cache{$month} = 1 }

else {

$cache{$month} = fib($month-1) + fib($month-2);

}

}

return $cache{$month};

}

}

. 67

Here fib gets the same argument as before. But instead of going into the recursive
Fibonacci calculation immediately, it checks the cache first. The cache is a hash,
%cache. When the function computes a Fibonacci number fib($month), it will
store the value in $cache{$month}. Later calls to fib() will check to see if there is
a value in the cache hash. This is the purpose of the exists $cache{$month} test.
If the cache element is absent, the function has never been called before for this
particular value of $month. The code inside the unless block is just the ordinary
Fibonacci computation, including recursive calls if necessary. However, once
the function has computed the answer, it doesn’t return it immediately; instead,
it inserts the value into the cache hash in the appropriate place. For example,
$cache{$month} = 1 takes care of populating the cache when $month < 2 is true.

At the end of the function, return $cache{$month} returns the cached value,
whether the function just inserted it or it was there to begin with.

With these changes, the fib function is fast. The excessive recursion problem
we saw in Chapter 1 simply goes away. The problem was caused by the repeated
recomputation of results; adding caching behavior prevents any recomputation
from occurring. When the function tries to recompute a result it has computed
already, it immediately gets the value from the cache instead.

3.2.1 Static Variables

Why is %cache outside of fib instead of inside, and why is there a bare block
around %cache and fib?

If %cache were declared inside of fib, like this:

sub fib {

my %cache;

...

}

then the cache would not work, because a new, fresh %cache variable would be
created on every call to fib, and thrown away when fib returned. By declaring
%cache outside of any function, we tell Perl that we want only one instance of
%cache, created when the program is first compiled and destroyed only when the
program is finished. This allows %cache to accumulate values and retain them
in between calls to fib. A variable like %cache that has been declared outside
all the functions is called a static variable because its value stays the same unless
it is explicitly changed, and also because a similar feature of the C language is
activated with the keyword static.

%cache has been declared with my, so it is lexically scoped. By default, its
scope will continue to the end of the file. If we had defined any functions after

68 Caching and Memoization

fib, they would also be able to see and modify the cache. But this isn’t what we
want; we want the cache to be completely private to fib. Enclosing both %cache

and fib in a separate block accomplishes this. The scope of %cache extends only
to the end of the block, which contains only fib and nothing else.

3.3

There aren’t too many ideas that are both good and simple. The few that we
have are used everywhere. Caching is one of these. Your web browser caches the
documents it retrieves from the network. When you ask for the same document
a second time, the browser retrieves the cached copy from local disk or mem-
ory, which is fast, instead of downloading it again. Your domain name server
caches the responses that it receives from remote servers. When you look up
the same name a second time, the local server has the answer ready and doesn’t
have to carry on another possibly time-consuming network conversation. When
your operating system reads data from the disks, it probably caches the data in
memory, in case it’s read again; when your CPU fetches data from memory, it
caches the data in a special cache memory that is faster than the regular main
memory.

Caching comes up over and over in real programs. Almost any program
will contain functions where caching might yield a performance win. But the
best property of caching is that it’s mechanical. If you have a function, and you
would like to speed it up, you might rewrite the function, or introduce a better
data structure, or a more sophisticated algorithm. This might require ingenuity,
which is always in short supply. But adding caching is a no-brainer; the caching
transformation is always pretty much the same. This:

sub some_function {

$result = some computation involving @_;

return $result;

}

turns into this:

{ my %cache;

sub some_function_with_caching {

my $key = join ',', @_;

return $cache{$key} if exists $cache{$key};

$result = the same computation involving @_;

. 69

return $cache{$key} = $result;

}

}

The transformation is almost exactly the same for every function. The only part
that needs to vary is the join ',', @_ line. This line is intended to turn the
function’s argument array into a string, suitable for a hash key. Turning arbitrary
values into strings like this is called serialization or marshalling.2 The preceding
join ',', @_ example works only for functions whose arguments are numbers
or strings that do not contain commas. We will look at the generation of cache
keys in greater detail later on.

3.4

Adding the caching code to functions is not very much trouble. And as we saw,
the changes required are the same for almost any function. Why not, then, get the
computer to do it for us? We would like to tell Perl that we want caching behavior
enabled on a function. Perl should be able to perform the required transforma-
tion automatically. Such automatic transformation of a function to add caching
behavior is called memoization and the function is said to be memoized.3

The standard Memoize module, which I wrote, does this. If the Memoize

module is available, we do not need to rewrite the fib code at all. We simply add
two lines at the top of our program:

use Memoize; CODE LIBRARY
fib-automemomemoize 'fib';

Compute the number of pairs of rabbits alive in month n

sub fib {

my ($month) = @_;

if ($month < 2) { 1 }

else {

fib($month-1) + fib($month-2);

}

}

2 Data marshalling is so named because it was first studied in 1962 by Edward Waite Marshall, then
with the General Electric corporation.

3 The term memoization was coined in 1968 by Donald Michie.

70 Caching and Memoization

fib now exhibits the caching behavior. The code is exactly the same as our original
slow version, but the function is no longer slow.

3.5

This book isn’t about the internals of Perl modules, but some of the techniques
used internally by Memoize are directly relevant to things we’ll be doing later on,
so we’ll have a short excursion now.

Memoize gets a function name (or reference) as its argument. It manufactures
a new function that maintains a cache and looks up its arguments in the cache. If
the new function finds the arguments in the cache, it returns the cached value; if
not, it calls the original function, saves the return value in the cache, and returns
it to the original caller.

Having manufactured this new function, Memoize then installs it into the
Perl symbol table in place of the original function so that when you think you’re
calling the original function, you actually get the new cache manager function
instead.

Rather than looking into the innards of the real Memoize module, which is a
350-line monster, we’ll see a tiny, stripped-down memoizer. The most important
thing we’ll get rid of is the part of the code that deals with the Perl symbol table.
(We’ll do this manually.) Instead, we’ll have a memoize function whose argument
is a reference to the subroutine we want to memoize, and which returns a reference
to the memoized version — that is, to the cache manager function:

sub memoize {CODE LIBRARY
memoize my ($func) = @_;

my %cache;

my $stub = sub {

my $key = join ',', @_;

$cache{$key} = $func->(@_) unless exists $cache{$key};

return $cache{$key};

};

return $stub;

}

To call this, we first use:

$fastfib = memoize(\&fib);

. 71

Now $fastfib is the memoized version of fib(). To install the memoized
version of fib() in the symbol table in place of the original, we would write
*fib = memoize(\&fib). In this example, the installation is necessary if we want
to calculate Fibonacci numbers quickly. Just creating a memoized version of
fib() isn’t enough, because the recursive calls inside of fib() are calling the
function named fib(), and until we do the *fib assignment, this is still the old,
slow, unmemoized version.

How does memoize work? We pass it a reference to fib, and memoize sets up a
private %cache variable to hold cached data. Then it manufactures a stub function,
temporarily stored in $stub, which it returns to its caller. This stub function is
actually the memoized version of fib; the caller of memoize gets back a reference
to it, which we stored in $fastfib in the preceding example.

When we invoke $fastfib, we actually get the stub function that was pre-
viously manufactured by memoize. The stub function assembles a hash key by
joining the function arguments together with commas; then it looks in the
cache to see if the key is a familiar one. If so, the stub returns the cached value
immediately.

If the hash key isn’t found in the hash, the stub function invokes the original
function via $func->(@_), gets the result, stores it in the cache, and returns it
(see Figure 3.1).

3.5.1 Scope and Duration

There are some subtleties here. First, suppose we call memoize(\&fib) and get
back $fastfib. Then we call $fastfib, which makes use of $func. A common
question is why $func didn’t go out of scope when memoize returned.

This question betrays a common misconception about scope. A variable has
two parts: a name and a value.4 When you associate a name with a value, you
get a variable. Such an association is called a binding; we also say that the name
is bound to its value.

There are two things that might go wrong with our attempt to use $func

after memoize returns: The value might have been destroyed, or the binding
might have changed, so that the name refers to the wrong value, or to nothing
at all.

4 This is not precisely accurate. In imperative languages like Perl, a variable is an association between
a name and the part of the computer’s memory in which the value will be stored. For purposes of
our discussion, this distinction is unimportant.

72 Caching and Memoization

Assemble
key

…

Return
value

Real
function

Store return value
in cache

Cache

Retrieve
cached
value

Call real function

Is key
in cache?

…

Y N

I/O

Stub function

 . Calling a memoized function.

scope is the part of the program’s source code in which a certain binding is in
force. Inside the scope of a binding, the name and value are associated; outside
this scope, the binding is out of scope and the name and value are no longer
associated. The name might mean something else, or nothing at all.

When memoize is entered, the my $func declaration creates a new, fresh scalar
value and binds the name $func to it. The scope of the name declared with my,
such as $func, begins on the statement following the my declaration, and ends
at the end of the smallest enclosing block. In this case, the smallest enclosing
block is the one labeled sub memoize. Inside this block, $func refers to the lexical
variable just created; outside, it refers to something else, probably the unrelated
global variable $func. Since the stub that uses $func is inside this block, there’s no
scope problem; $func is in scope inside of the stub, and the name $func retains
its binding.

Outside the sub memoize block, $func means something different, but
the stub is inside the block, not outside. Scope is lexical, which means that

. 73

it’s a property of the static program text, not a property of the order in
which things execute. The fact that the stub is called from outside the sub

memoize block is irrelevant; its code is “physically within” the scope of the $func

binding.
The situation is the same for %cache.

Most people who ask whether $func is out of scope are worried about a differ-
ent problem, which is not a scope issue, but instead concerns something quite
different, called duration. The duration of a value is the period of time dur-
ing the program’s execution in which the value is valid for use. In Perl, when a
value’s duration is up, it is destroyed, and the garbage collector makes its memory
available for re-use.

The important thing to know about duration is that it is almost completely
unrelated to issues of names. In Perl, a value’s duration lasts until there are no
outstanding references to it. If the value is stored in a named variable, that counts
as a reference, but there are other kinds of references. For example:

my $x;

{

$x = 3;

my $r = \$x;

}

Here there is a scalar with the value 3. At the end of the block, there are two
references to it:

$x 3

$r

pad

The pad is the data structure that Perl uses internally to represent bindings
of my variables. (A different structure is used for global variables.) One reference
to the 3 is from the pad itself, because the name $x is bound to the value 3. The
other reference to the 3 is from the reference value that is bound to $r.

74 Caching and Memoization

When control leaves the block, $r goes out of scope, so the binding of $r to
its value is dissolved. Internally, Perl deletes the $r binding from the pad:

$x 3

pad

Now there’s no reference to the reference value that used to be stored in
$r. Since nothing refers to it anymore, its duration is over and Perl destroys it
immediately:

$x 3

pad

This is typical: A variable’s name goes out of scope, and its value is destroyed
immediately after. Much of the confusion between scope and duration is probably
caused by the ubiquity of this simple example. But scope and duration are not
always so closely joined, as the next example will show:

my $r;

{

my $x = 3;

$r = \$x;

}

$r

3$x

When control leaves the block, the binding of $x is dissolved and $x is deleted
from the pad:

$r

3

pad

. 75

Unlike in the previous example, the unbound value persists indefinitely
because it is still referred to by the reference bound to $r. Its duration will not
be over until this reference is gone.

This separation of scope and duration is an essential property of Perl variables.
For example, a common pattern in Perl object-oriented constructor functions is:

sub new {

...

my %self;

...

return \%self;

}

This constructor manufactures a hash, which is the object itself; then it returns
a reference to the hash. Even though the name %self has gone out of scope, the
object persists as long as the caller holds a reference to it. The analogous code
in C is erroneous, because in C, the duration of an auto variable ends with its
scope:

/* This is C */

struct st_object *new(...) {

struct st_object self;

...

return &self; /* expect a core dump */

}

Now let’s return to memoize. When memoize returns, $func does indeed go out
of scope. But the value is not destroyed, because there is still an outstanding
reference from the stub. To really understand what is going on, we need to take
a peek into Perl’s internals (see Figure 3.2).

The stub is represented by the double box at the top center of the diagram.
In Perl jargon, this box is called a CV, for “code value”; it is the internal represen-
tation of a coderef. (The coderef bound to $func is visible on the right-hand side
of the diagram.) A CV is essentially a pair of pointers: one points to the code for
the subroutine, and the other points to the pad that was active at the moment
that the subroutine was defined. The binding of $func won’t be destroyed until
the pad it’s in is destroyed. The pad won’t be destroyed because there is a reference
to it from the CV. The CV won’t be destroyed because the caller stored it in the
caller’s pad by assigning it to $fastfib.

Perl knows that the stub might someday be invoked, and if it is, it might
examine the value of $func. As long as the stub exists, the value of $func must be

76 Caching and Memoization

$fastfib

caller's pad stub stub's pad

%cache

$func

\&fib

...

fib's
pad...

my ($month) = @_;
if ($month < 2) { 1 }
else {
 fib($month-1)
 + fib($month-2);
}

my $key = join ',', @_;
$cache{$key} = func->(@_)
 unless exists $cache{$key};
return $cache{$key};

 . The data structure manufactured by memoize.

preserved intact. There is a reference to the stub stored in $fastfib, and as long
as the reference is there, the stub must be preserved. Similarly, the cache %cache

persists as long as the stub does.

3.5.2 Lexical Closure

Now another point might be worrying you. Since the value of $func persists as
long as the stub does, what happens if we call memoize a second time, while the
first stub is still extant? Will the assignment to $func in the second call clobber
the value that the first stub was using?

The answer is no; everything works perfectly. This is because Perl’s anony-
mous functions have a property called lexical closure. When an anonymous
function is created, Perl packages up its pad, including all the bindings that
are in scope, and attaches them to the CV. A function packaged up with an
environment in this way is called a closure.

When the stub is invoked, the original environment is temporarily reinstated,
and the stub function code is run in the environment that was in force at the
time the stub was defined. Lexical closure means that an anonymous function
carries its native environment wherever it goes, just like some tourists I have met.

The first time we call memoize, to memoize fib(), a new pad is set up for the
bindings of %cache and $func, new storage is allocated for these new variables,
and $func is initialized. Then the stub is created; the pad is attached to the CV
for the stub, and the CV (let’s call it fastfib()) is returned back to the caller.

. 77

fastfib

%cache

$func

...

(fib)

fastquib

%cache

$func

...

(quib)

my $key = join ',', @_;
$cache{$key} = $func->(@_)
 unless exists $cache{$key};
return $cache{$key};

stub function code

 . After two calls to memoize.

Now let’s call memoize a second time, this time to memoize quib() instead
of fib() (see Figure 3.3). Once again, a new pad is created and fresh %cache and
$func variables are bound into it. A CV is created (which we’ll call fastquib())
that contains a pointer to the new pad. The new pad is completely unrelated to
the pad that was attached to fastfib().

When we invoke fastfib, fastfib’s pad is temporarily reinstated, and
fastfib’s code is executed. The code makes use of variables named %cache and
$func, and these are looked up in fastfib’s pad. Perhaps some data is stored into
%cache at this time. Eventually, fastfib returns, and the old pad comes back
into force.

Then we invoke fastquib, and almost the same thing happens. fastquib’s
pad is reinstated, with its own notion of %cache and $func. fastquib’s code is
run, and it too makes use of variables named %cache and $func. These are looked
up in fastquib’s pad, which has no connection to fastfib’s pad. Data stored
into fastfib’s %cache is completely inaccessible to fastquib.

Because the code part of the CV is read-only, it is shared between several CVs.
This saves memory. When a CV’s duration is over, its pad is garbage-collected.

Figure 3.4 shows a simpler example.

sub make_counter { CODE LIBRARY
closure-examplemy $n = shift;

return sub { print "n is ", $n++ };

}

my $x = make_counter(7);

my $y = make_counter(20);

78 Caching and Memoization

$x

$n 7

$y

$n

print "n is ", $n++

20

 . After two calls to make_counter.

$x->(); $x->(); $x->();

$y->(); $y->(); $y->();

$x->();

$x now contains a closure whose code is print "n is ", $n++ and whose
environment contains a variable $n, set to 7. If we invoke $x a few times:

$x->(); $x->(); $x->();

the result is

n is 7

n is 8

n is 9

The new picture is shown in Figure 3.5.

10

$x

$n

$y

$n

print "n is ", $n++

20

 .

. 79

23

10

$x

$n

$y

$n

print "n is ", $n++

 .

Now let’s run $y a few times:

$y->(); $y->(); $y->();

The same code runs, but this time the name $n is looked up in $y’s pad instead
of in $x’s pad:

n is 20

n is 21

n is 22

The new picture is shown inFigure 3.6.
Now let’s run $x again:

n is 10

The $n here is the same variable as it was the first three times we invoked $x, and
it has retained its value.

3.5.3 Memoization Again

All of the foregoing discussion was by way of explaining just why our memoize

function worked. While it’s tempting to dismiss this as a triviality — “Of course it
worked!” — it’s worth noticing that in many languages it won’t work and can’t be
made to work. Several important and complex features had to operate together:
delayed garbage collection, bindings, generation of anonymous subroutines, and
lexical closure. If you tried to implement a function like memoize in C, for

80 Caching and Memoization

example, you would get stuck, because C doesn’t have any of those features. (See
Section 3.11.)

3.6

(That’s Latin for “warnings.”)
Clearly, memoization is not a suitable solution for all performance problems.

It is not even applicable to all functions. There are several kinds of functions that
should not be memoized.

3.6.1 Functions Whose Return Values Do Not Depend on
Their Arguments

Memoization is most suitable for functions whose return values depend only on
their arguments. Imagine the foolishness of memoizing a time-of-day function:
The first time you called it, you would get the time of day; subsequent calls would
return the same time. Similarly, imagine the perversity of a memoized random
number generator.

Or imagine a function whose return value indicates a success or failure of
some sort. You do not want such a function to be memoized and return the same
value every time it is called.

However, memoization is suitable for some such functions. For example, it
might be useful to memoize a function whose result depends on the current hour
of the day, if the program will run for a long time. (See Section 3.7 for details
about how to handle this.)

3.6.2 Functions with Side Effects

Many functions are called not for their return values but for their side effects.
Suppose you have written a program that formats a computer uptime report
and delivers the report to the printer to be printed. Probably the return value
is not interesting, and caching it is silly. Even if the return value is interesting,
memoization is still inappropriate. The function might complete much more
quickly after the first run, because of the memoization, but your boss would
not be impressed, because it would have returned the old cached return value
immediately, without bothering to actually print the report.5

5 I sometimes enjoy the mind-bending exercise of imagining the result of memoizing the Unix
fork() function.

. 81

3.6.3 Functions That Return References

This problem is a little more subtle. Functions that return references to values
that may be modified by their callers must not be memoized.

To see the potential problem, consider this example:

use Memoize;

sub iota {

my $n = shift;

return [1 .. $n];

}

memoize 'iota';

$i10 = iota(10);

$j10 = iota(10);

pop @$i10;

print @$j10;

The first call to iota(10) generates a new, fresh anonymous array of the numbers
from 1 to 10, and returns a reference to this array. This reference is automatically
placed in the cache, and is also stored into $i10. The second call to iota(10)

fetches the same reference from the cache and stores it into $j10. Both $i10 and
$j10 now refer to the same array — we say that they are aliases for the array.

When we change the value of the array via the $i10 alias, the change affects the
value that is stored in $j10 ! This was probably not what the caller was expecting,
and it would not have happened if we had not memoized iota. Memoization
is supposed to be an optimization. This means it is supposed to speed up the
program without changing its behavior.

The prohibition on memoizing functions that return references to values that
may be modified by the caller probably applies most commonly to object-oriented
constructor methods. Consider:

package Octopus;

sub new {

my ($class, %args) = @_;

$args{tentacles} = 8;

bless \%args => $class;

}

sub name {

82 Caching and Memoization

my $self = shift;

if (@_) { $self->{name} = shift }

$self->{name};

}

my $junko = Octopus->new(favorite_food => "crab cakes");

$junko->name("Junko");

my $fenchurch = Octopus->new(favorite_food => "crab cakes");

$fenchurch->name("Fenchurch");

This prints "Fenchurch" -- oops!

print "The name of the FIRST octopus is ", $junko->name, "\n";

Here the programmer is expecting to manufacture two different octopuses, one
named “Junko” and the other “Fenchurch.” Both octopuses enjoy crab cakes.
Unfortunately, someone has foolishly decided to memoize new(), and since the
arguments to it are the same on the second call, the memoization stub returns
the cached return value from the first call, which is a reference to the “Junko”
object. The programmer thinks that there are two octopuses, but really there is
only one, masquerading as two.

Functions whose return values depend only on their arguments, and which
do not have side effects, and which never return references are called pure func-
tions. Caching techniques are most suitable for use with pure functions, although
they can sometimes be used even with impure functions.

3.6.4 A Memoized Clock?

A simple and instructive example of a cached impure function is provided by
Perl’s $ˆT variable. Perl provides several convenient operators for files, such as
-M $filename, which returns the amount of time, in days, since the file named by
its argument was last modified. To compute this, Perl asks the operating system
for the last-modification time, subtracts this from the current time, and converts
to days. Since -M may be performed very frequently, it is important that it be
fast: Consider:

@result = sort { -M $a <=> -M $b } @files;

which sorts a list of files by their last modification time. It’s already expensive
to look up the last-modified times for many files, and there’s no need to make
thousands of calls to the time() function on top of that cost. Even worse, the OS

. 83

may track the time to an accuracy of only one second, and if the system clock
happens to advance during the execution of the sort(), the result list might be
in the wrong order!

To avoid these problems, Perl does not look up the current time whenever
a -M operation is performed. Instead, when the program is first run, Perl caches
the current time in the special $ˆT variable, and uses that as the current time
whenever -M is invoked. Most programs are short-lived, and most don’t need
exact accuracy in the results from -M, so this is usually a good idea. Certain long-
running programs need to periodically refresh $ˆT by doing $ˆT = time(), to
prevent the -M results from getting too far out of date. When caching an impure
function, it is usually a good idea to provide an expiration regime, in which old
cached values are eventually discarded and refreshed. It is also prudent to allow
the programmer a way to flush the entire cache. The Memoize module provides
the opportunity to plug in a cache expiry manager.

3.6.5 Very Fast Functions

I once talked to a programmer who complained that when he memoized his
function, it got slower instead of faster. It turned out that the function he was
trying to speed up was:

sub square { $_[0] * $_[0] }

Caching, like all techniques, is a tradeoff. The potential benefit is that you make
fewer calls to the original function. The cost is that your program must examine
the cache on every call. Earlier, we saw the formula hf − K , which expresses the
amount of time saved by memoization. If hf < K , then the memoized version
will be slower than the unmemoized version. h is the cache hit rate and is between
0 and 1. f is the original running time of the function, and K is the average time
needed to check the cache. If f is smaller than K, hf < K will be inevitable.
If the cost of examining the cache is larger than the cost of calling the original
function, memoization does not make sense. You can’t save time by eliminating
“unnecessary” calls because it takes longer to find out that the call is unnecessary
than it does to make the call in the first place.

In our square example, the function is doing a single multiplication. Check-
ing a cache requires a hash lookup; this includes computation of a hash value
(many multiplications and additions), then indexing into the hash bucket array,
and possibly a search of a linked list. There is no way this is going to beat a single
multiplication. In fact, almost nothing beats a single multiplication. You can’t

84 Caching and Memoization

speed up the square function, by memoization or any other technique, because
it is already almost as fast as any function can possibly be.

3.7

The memoizer we saw earlier has at least one serious problem. It needs to turn
the function arguments into a hash key, and the way it does that is with join:

my $key = join ',', @_;

This works for functions with only one argument, and it works for functions
whose arguments never contain commas, including all functions whose argu-
ments are numbers. But if the function arguments may contain commas, it
might fail, because the same key is computed for these two calls:

func("x,", "y");

func("x", ",y");

When the first call is made, the return value will be stored in the cache under
the key "x„y". When the second call is made, the true function will not be
consulted. Instead the cached value from the first call will be returned. But the
function might have wanted to return a different value — the memoization code
has confused these two argument lists, resulting in a false cache hit.

Since this can fail only for functions whose arguments may contain commas,
it may not be a consideration. Even if the function arguments may contain
commas, it’s possible that there is some other character that they will never
contain. The Perl special variable $; is sometimes used here. It normally contains
character #28, which is the control–backslash character. If the key generator uses
join $; , @_, it will fail only when the function arguments contain control–
backslash; it is often possible to be sure this will never occur. But often we have
a function whose argument could contain absolutely anything, and one of these
partial hacks won’t work reliably.

This can be fixed, because there’s always a way to turn any data structure,
such as an argument list, into a string in a faithful way, so that different structures
become different strings.6

6 To see this, just realize that there must be some difference in the way the two structures are
represented in memory, and that the computer’s memory is itself nothing more than a very long
string.

. 85

One strategy would be to use the Storable or FreezeThaw module to turn
the argument list into a string. A much more efficient strategy is to use escape
sequences:

my @args = @_;

s/([\\,])/\\$1/g for @args;

my $key = join ",", @args;

Here we insert a backslash character before every comma or backslash in the
original arguments, then join the results together with unbackslashed com-
mas. The problem calls we saw earlier are no longer problems, because the
two argument lists are transformed to different keys: one to 'x\,,y' and the
other to 'x,\,y'. (An exercise: Why is it necessary to put a backslash before
every backslash character as well as before every comma?)

However, correctness has been bought at a stiff performance price. The
escape character code is much slower than the simple join— about ten times
slower even for a simple argument list such as (1,2)— and it must be performed
on every call to the function. Normally, we laugh at people who are willing to
trade correctness for speed, since it doesn’t matter how quickly one is able to find
the wrong answer. But this is an unusual circumstance. Since the only purpose
of memoization is to speed up a function, we want the overhead to be as small
as possible.

We’ll adopt a compromise. The default behavior of memoize will be fast, but
not correct in all cases. We’ll give the user of memoize an escape hatch to fix this.
If the user doesn’t like the default key-generation method, they may supply an
alternative, which memoize will use instead.

The change is simple:

sub memoize { CODE LIBRARY
memoize-norm1my ($func, $keygen) = @_;

my %cache;

my $stub = sub {

my $key = $keygen ? $keygen->(@_) : join ',', @_;

$cache{$key} = $func->(@_) unless exists $cache{$key};

return $cache{$key};

};

return $stub;

}

The stub returned by memoize looks to see if a $keygen function was supplied
when the original function was memoized. If so, it uses the keygen function to

86 Caching and Memoization

construct the hash key; if not, it uses the default method. The extra test is fairly
cheap, but we can eliminate it if we want to by performing the test for $keygen
once, at the time the function is memoized, instead of once for each call to the
memoized function:

sub memoize {CODE LIBRARY
memoize-norm2 my ($func, $keygen) = @_;

my %cache;

my $stub = $keygen ?

sub { my $key = $keygen->(@_);

$cache{$key} = $func->(@_) unless exists $cache{$key};

return $cache{$key};

}

:

sub { my $key = join ',', @_;

$cache{$key} = $func->(@_) unless exists $cache{$key};

return $cache{$key};

}

;

return $stub;

}

We can pull an even better trick here. In these versions of memoize, $keygen is
an anonymous function that has to be invoked on each call to the memoized
function. Perl, unfortunately, has a relatively high overhead for function calls,
and since the purpose of memoize is to speed things up, we’d like to avoid this if
we can.

Perl’s eval feature comes to the rescue here. Instead of specifying $keygen as
a reference to a key-generation function, we’ll pass in a string that contains the
code to generate the key, and incorporate this code directly into the stub, rather
than as a sub-function that the stub must call.

To use this version of memoize, we will say something like this:

$memoized = memoize(\&fib, q{my @args = @_;

s/([\\,])/\\$1/g for @args;

join ',', @args;

});

memoize will interpolate this bit of code into the appropriate place in a template
of the memoized function (this is called inlining) and use eval to compile the

. 87

result into a real function:

sub memoize { CODE LIBRARY
memoize-norm3my ($func, $keygen) = @_;

$keygen ||= q{join ',', @_};

my %cache;

my $newcode = q{

sub { my $key = do { KEYGEN };

$cache{$key} = $func->(@_) unless exists $cache{$key};

return $cache{$key};

}

};

$newcode =˜ s/KEYGEN/$keygen/g;

return eval $newcode;

}

Here we used Perl’s q{...} operator, which is identical with '...', except that
single-quote characters aren’t special inside of q{...}. Instead, the q{...} con-
struction ends at the first matching } character. If we hadn’t used q{...} here,
the third line would have been rather cryptic:

$keygen ||= 'join \',\', @_';

We used the s/// operator to inline the value of $keygen, instead of simply
interpolating it into a double-quoted string. This is slightly less efficient, but it
needs to be done only once per memoized function, so it probably doesn’t matter.
The benefit is that with the s/// technique, the $newcode variable is easy to read;
if we had used string interpolation, it would have been:

my $newcode = "

sub { my \$key = do { $keygen };

\$cache{\$key} = \$func->(\@_) unless exists \$cache{\$key};

return \$cache{\$key};

}

";

Here the backslashes clutter up the code. A maintenance programmer reading
this might not notice that $keygen is being interpolated even though everything
else is backslashed. With the s/// technique, KEYGEN stands out clearly.

For this example, the cache management overhead is about 37% lower with
the inlining version of memoize.

88 Caching and Memoization

It’s easy to tweak this version so that it still accepts a function reference the
way the previous one did:

sub memoize {CODE LIBRARY
memoize-norm4 my ($func, $keygen) = @_;

my $keyfunc;

if ($keygen eq '') {

$keygen = q{join ',', @_}

} elsif (UNIVERSAL::isa($keygen, 'CODE')) {

$keyfunc = $keygen;

$keygen = q{$keyfunc->(@_)};

}

my %cache;

my $newcode = q{

sub { my $key = do { KEYGEN };

$cache{$key} = $func->(@_) unless exists $cache{$key};

return $cache{$key};

}

};

$newcode =˜ s/KEYGEN/$keygen/g;

return eval $newcode;

}

Here, if no key generator is supplied, we inline join ',', @_ as usual. If
$keygen is a function reference, we can’t simply inline it, because it will turn
into something useless like CODE(0x436c1d). Instead, we save the function refer-
ence in the $keyfunc variable and inline some code that will call the function via
$keyfunc.

The UNIVERSAL::isa($keygen, 'CODE') line requires some explanation. We
want to test to see if $keygen is a code reference. The obvious way of doing
that is:

if (ref($keygen) eq 'CODE') { ... }

Unfortunately, the Perl ref function is broken, because it confuses two different
properties of its argument. If $keygen is a blessed code reference, the test above
will fail, because refwill return the name of the class into which $keygen has been
blessed. Using UNIVERSAL::isa avoids this problem. It’s also possible, although
much less likely, that the test could yield true for a non-code reference; this will
happen if someone has been silly enough to bless the non-code reference into
the class CODE.

. 89

3.7.1 More Applications of User-Supplied Key Generators

With any of these key-generation features, users of our memoize function have
escape hatches if the join method doesn’t work correctly for the function they
are trying to memoize. They can substitute a key generator based on Storable

or the escape-character method or whatever is appropriate.
User-supplied key generators solve the problems that may occur when two

different argument lists hash to the same key. They also solve the converse
problem, which occurs when two equivalent argument lists hash to dif-
ferent keys.

Consider a function whose argument is a hash, which might contain any, all,
or none of the keys A, B, and C, each with an associated numeric value. Further,
suppose that B, if omitted, defaults to 17, and A defaults to 32:

sub example {

my %args = @_;

$args{A} = 32 unless defined $args{A};

$args{B} = 17 unless defined $args{B};

...

}

Then the following calls are all equivalent:

example(C => 99);

example(C => 99, A => 32);

example(A => 32, C => 99);

example(B => 17, C => 99);

example(C => 99, B => 17);

example(A => 32, C => 99, B => 17);

example(B => 17, A => 32, C => 99);

(etc.)

The join method of key construction generates a different key for each of these
calls ("C,99" versus "A,32,C,99" versus "C,99,A,32" and so forth). The cache
manager will therefore miss opportunities to avoid calling the real example()
function. A call to example(A => 32, C => 99) must produce the same result
as a call to example(C => 99, A => 32), but the cache manager doesn’t know
that, because the argument lists are superficially different. If we can arrange
that equivalent argument lists are transformed to the same hash key, the cache
manager will return the same value for example(C => 99, A => 32) that it had
previously computed for example(A => 32, C => 99), without the redundant

90 Caching and Memoization

call to example. This will increase the cache hit rate h in the formula hf − K that
expresses the speed-up from memoization. The following key generator does the
trick:

sub {

my %h = @_;

$h{A} = 32 unless defined $h{A};

$h{B} = 17 unless defined $h{B};

join ",", @h{'A','B','C'};

}

Each of the eight equivalent calls (of which example(C => 99, A => 32) was
one) receives a key of "32,17,99" from this function. Here we pay an up-front
cost: This key generator takes about ten times as long as the simple join gen-
erator, so the K in the hf − K formula is larger. Whether this cost is repaid
depends on how expensive it is to call the real function, f, and on the size
of the increase of cache hits frequency, h. As usual, there is no substitute for
benchmarking.

3.7.2 Inlined Cache Manager with Argument Normalizer

Here’s an interesting trick we can play with the inlined key-generation code.
Consider the following function, a variation on the example we just saw:

sub example {

my ($a, $b, $c) = @_;

$a = 32 unless defined $a;

$b = 17 unless defined $b;

more calculation here ...

}

A suitable key generator might be:

my ($a, $b, $c) = @_;

$a = 32 unless defined $a;

$b = 17 unless defined $b;

join ',', $a, $b, $c;

It’s a little irritating to have to repeat the code that sets the defaults for the
arguments, and equally irritating to have to run it twice. If we change the

. 91

key-generation code as follows, we will be able to remove the argument checking
from the example function:

$_[0] = 32 unless defined $_[0];

$_[1] = 17 unless defined $_[1];

join ',', @_;

When this is inlined into the memoize function, the result is:

sub { my $key = do { $_[0] = 32 unless defined $_[0];

$_[1] = 17 unless defined $_[1];

join ',', @_;

};

$cache{$key} = $func->(@_) unless exists $cache{$key};

return $cache{$key};

}

Notice what happens here. The key is generated as before, but there is a side
effect: @_ is modified. If there is a cache miss, the memoized function calls $func
with the modified @_. Since @_ has been modified to include the default values
already, we can omit the default-setting code from the original function:

sub example {

my ($a, $b, $c) = @_;

defaults set by key generation code

$a = 32 unless defined $a;

$b = 17 unless defined $b;

more calculation here ...

}

Of course, once we’ve modified the example function in this way, we can’t turn
the memoization off, because essential functionality has been moved into the key
generator.

Another danger with this technique is that modifying @_ can have peculiar
effects back in the calling function. Elements of @_ are aliased to the correspond-
ing arguments back in the caller, and assigning to elements of @_ in the memoized
function can modify variables outside the memoized function. Here is a simple
example:

sub set_to_57 {

$_[0] = 57;

}

92 Caching and Memoization

my $x = 119;

set_to_57($x);

This does set $x to 57, as if we had done $x = 57, even though the assignment
is performed outside the scope of $x and shouldn’t be able to affect it. Our
assignments inside the key-generator code may have similar effects.

Sometimes this feature of Perl is useful, but most often it is more trouble
than it is worth, and we normally avoid it. We do this by never operating on @_

directly, but by copying its contents into a series of lexical variables as soon as
the function is called:

sub safe_function {

my ($n) = @_;

$n = 57; # does *not* set $x to 57

}

my $x = 119;

safe_function($x);

By combining these techniques, we can get a version of the key-generation code
that obviates the need for the default-setting code in the real function, but which
is still safe:

memoize(\&example, q{

my ($a, $b, $c) = @_;

$a = 32 unless defined $a;

$b = 17 unless defined $b;

@_ = ($a, $b, $c); # line 5

join ',', @_;

});

The elements of @_ are aliases for the arguments back in the calling function,
but @_ itself isn’t. The assignment to @_ on line 5 doesn’t overwrite the val-
ues back in the caller; it discards the aliases entirely and replaces the contents
of @_ with the new values. This trick works only when the key-generation
code is inlined into the memoized function; if the key-generation code is
called as a subroutine, the change to @_ has no effect after the subroutine
returns.

. 93

3.7.3 Functions with Reference Arguments

Here’s another problem solved by the custom key-generator feature. Consider
this function:

sub is_in {

my ($needle, $haystack) = @_;

for my $item (@$haystack) {

return 1 if $item == $needle;

}

return;

}

The function takes $needle, which is a number, and $haystack, which is a list of
numbers, and returns true if and only if $haystack contains $needle. A typical
call is:

if (is_in($my_id, \@employee_ids)) { ... }

We might like to try memoizing is_in, but a possible problem is that the
$haystack argument is a reference. When it is handled by the join function, it
turns into a string like ARRAY(0x436c1d). If we later call is_in() with a $haystack
argument that refers to a different array with the same contents, the hash key
will be different, which may not be what we want; conversely, if the contents of
@employee_ids change, the hash key will still be the same, which certainly isn’t
what we want. The key generator is generating the key from the identity of the
array, but the is_in() function doesn’t care about the identity of the array; it
cares only about the contents. A more appropriate key-generation function in
this case is:

sub { join ",", $_[0], @{$_[1]} }

Again, whether this actually produces a performance win depends on many
circumstances that will be hard to foresee. When performance is important, it
is essential to gather real data. Long experience has shown that even experts are
likely to guess wrong about what is fast and what is slow.

3.7.4 Partitioning

The find_share function of Chapter 1 provides a convenient example of a func-
tion for which memoization fixes slow recursion, as well as requiring a custom

94 Caching and Memoization

key generator:

sub find_share {

my ($target, $treasures) = @_;

return [] if $target == 0;

return if $target < 0 || @$treasures == 0;

my ($first, @rest) = @$treasures;

my $solution = find_share($target-$first, \@rest);

return [$first, @$solution] if $solution;

return find_share($target , \@rest);

}

As you’ll recall, this function takes an array of treasures and a target value, and
tries to select a subset of the treasures that total the target value exactly. If there
is such a set, it returns an array with just those treasures; if not, it returns
undef.

We saw in Chapter 1 that this function has the same problem as the fib func-
tion: It can be slow, because it repeats the same work over and over again. When
trying to select treasures from 1 2 3 4 5 6 7 8 9 10 that total 53, find_share
comes upon the same situation twice: It finds that 1+2+3+6 = 12, and invokes
find_share(41, [7,8,9,10]), which eventually returns undefined. Then later,
it finds that 1 + 2 + 4 + 5 = 12, and invokes find_share(41, [7,8,9,10]) a
second time. Clearly, this is a good opportunity to try some caching.

For even this simple case, memoization yields a speed-up of about 68%. For
larger examples, such as find_share(200, [1..20]), the speedup is larger, about
82%. In some cases, memoization can make the difference between a practical
and an impractical algorithm. The unmemoized version of find_share([1..20],
210) takes several thousand times longer to run than the memoized version. (I used
the key generation function sub {join "-", @{$_[1]}, $_[0]}.)

3.7.5 Custom Key Generation for Impure Functions

Custom key generation can also be used to deal with certain kinds of functions
that depend on information other than their arguments.

Let’s consider a long-running network server program whose job is to sell
some product, such as pizzas or weapons-grade plutonium. The cost of a pizza
or a canister of plutonium includes the cost of delivery, which in turn depends
on the current hour of the day and day of the week. Delivery late at night and
on weekends is more expensive because fewer delivery persons are available and

. 95

nobody likes to work at 3 AM.7 The server might contain a function something
like this:

sub delivery_charge { CODE LIBRARY
delivery-chargemy ($quantity_ordered) = @_;

my ($hour, $day_of_week) = (localtime)[2,6];

perform complex computation involving $weight, $gross_cost,

$hour, $day_of_week, and $quantity_ordered

...

return $delivery_charge;

}

Because the function is complicated, we would like to memoize it. The default
key generator, join(',', @_), is unsuitable here, because we would lose the
time dependence of the delivery charge. But it’s easy to solve the problem with
a custom key-generation function such as:

sub delivery_charge_key {

join ',', @_, (localtime)[2,6];

}

delivery_charge is not a pure function, but in this case it may not matter. The
only real issue is whether there will be enough cache hits to gain a performance
win. We might expect the function to have many cache misses for the first week,
until the day of the week rolls over, and then to start seeing more cache hits. In
this case the effectiveness of the caching might depend on the longevity of the
program. Similarly, we might wonder if the following key-generation function
wouldn’t be better:

sub delivery_charge_key {

my ($hour, $day_of_week) = (localtime)[2,6];

my $weekend = $day_of_week == 0 || $day_of_week == 6;

join ',', @_, $hour, $weekend;

}

This function takes longer to run, but might get more cache hits because it
recognizes that values cached on Monday may be used again on Tuesday and
Wednesday. Again, which is best will depend on subtle factors in the program’s
behavior.

7 Most plutonium is ordered late at night in spite of the extra costs.

96 Caching and Memoization

3.8

For object methods, it often makes little sense to store the cached values in a
separate hash. Consider an Investor object in a program written by an investment
bank. The object represents one of the bank’s customers:

package Investor;

Compute total amount currently invested

sub total {

my $self = shift;

... complex computation performed here ...

return $total;

}

If the $total is not expected to change, we might add caching to it, using the
object’s identity as a key into the cache hash:

Compute total amount currently invested

{ my %cache;

sub total {

my $self = shift;

return $cache{$self} if exists $cache{$self};

... complex computation performed here ...

return $cache{$self} = $total;

}

}

However, this technique has a serious problem. When we use an object as
a hash key, Perl converts it to a string. The typical hash key will look like
Investor=HASH(0x80ef8dc). The hexadecimal numeral is the address at which
the object’s data is actually stored. It is essential that this key be different for
every two objects, or we run the risk of false cache hits, where we retrieve one
object’s total while thinking that it belongs to a different object. In Perl, these
hash keys are indeed distinct for all the live objects in the system at any given
time, but no guarantee is made about dead objects. If an object is destroyed and
a new object is created, the new object might very well exist at the same memory
address formerly occupied by the old object and thus be confused with it:

here 90,000 is returned from the cache

$old_total = $old_object->total();

. 97

undef $old_object;

$new_object = Investor->new();

$new_total = $new_object->total();

Here we ask for the total for the new investor. It should be 0, since the investor
is new. But instead, the ->total method happens to look in the cache under the
same hash key that was used by the $old_object that was recently destroyed; the
method sees the 90000 stored there, and returns it erroneously. This problem can
be solved with a DESTROY method that deletes an object’s data from the cache,
or by associating a unique, non-re-usable ID number with every object in the
program, and using the ID number as the hash key, but there is a much more
straightforward solution.

In an OOP context, the cache hash technique is peculiar, because there is a
more natural place to store the cached data: as member data in the object itself.
A cached total becomes another property that might or might not be carried by
each individual object:

Compute total amount currently invested

sub total {

my $self = shift;

return $self->{cached_total} if exists $self->{cached_total};

... complex computation performed here ...

return $self->{cached_total} = $total;

}

Here the logic is exactly the same as before; the only difference is that the
method stores the total for each object in the object itself, instead of in an
auxiliary hash. This avoids the problem of hash key collision that arose with the
auxiliary hash.

Another advantage of this technique is that the space devoted to storage of
the cached total is automatically reclaimed when the object is destroyed. With
the auxiliary hash, each cached value would persist forever, even after the object
to which it belonged was destroyed.

Finally, storing the cached information in each object allows more flexible
control over when it is expired. In our example total computes the total amount
of money that a certain investor has invested. Caching this total may be appro-
priate since investors may not invest new money too frequently. But caching it
forever is probably not appropriate. In this example, whenever an investor invests
more money, we need some way of signalling the total function that the cached
total is no longer correct, and must be recomputed from scratch. This is called
expiring the cached value.

98 Caching and Memoization

With the auxiliary hash technique, there was no way to do this without
adding a special-purpose method in the scope of the cache hash, something
like this:

Compute total amount currently invested

{ my %cache;

sub total {

my $self = shift;

return $cache{$self} if exists $cache{$self};

... complex computation performed here ...

return $cache{$self} = $total;

}

sub expire_total {

my $self = shift;

delete $cache{$self};

}

}

sub invest {

my ($self, $amount, ...) = @_;

$self->expire_total;

...

}

With the object-oriented technique, no special method is necessary, because each
method can directly expire the cached total if it needs to:

Compute total amount currently invested

sub total {

my $self = shift;

return $self->{cached_total} if exists $self->{cached_total};

... complex computation performed here ...

return $self->{cached_total} = $total;

}

sub invest {

my ($self, $amount, ...) = @_;

delete $self->{cached_total};

...

}

. 99

3.8.1 Memoization of Object Methods

As we saw, for object methods, we often like to cache each computed value
with the object for which it is relevant, instead of in one separate hash. The
memoize function we saw earlier doesn’t do this, but it’s not hard to build one
that does:

sub memoize_method { CODE LIBRARY
memoize-method

my ($method, $key) = @_;

return sub {

my $self = shift;

return $self->{$key} if exists $self->{$key};

return $self->{$key} = $method->($self, @_);

};

}

$method is a reference to the true method. $key is the name of the slot in each
object in which the cached values will be stored. The stub function returned here
is suitable for use as a method. When the stub is invoked, it retrieves the object
on whose behalf it was called, just like any other method; then it looks in the
object for member data named $key to see if a value is cached there. If so, the
stub returns the cached value; if not, it calls the real method, caches the result in
the object, and returns the new cached result.

To use this, we might write something like this:

*Investor::total = memoize_method(\&Investor::total, 'cached_total');

$investor_bob->total;

This installs the stub in the symbol table in place of the original method.
Alternatively, we might use:

$memoized_total = memoize_method(\&Investor::total, 'cached_total');

$investor_bob->$memoized_total;

These are not quite the same. In the former case, all calls to ->total will use
the memoized version of the method, including calls from subclasses that inherit
the method. In the latter case, we get the memoized version of the method only
when we explicitly ask for it by using the ->$memoized(...) notation.

100 Caching and Memoization

3.9

Before we leave the topic of automatic memoization, we’ll see a few peripheral
techniques. We saw how a function could be replaced with a memoized version
that stored return values in a cache; the cache was simply a hash variable.

In Perl, one can use the tie operator to associate a hash variable with a disk
database, so that data stored in the hash is automatically written to the disk, and
data fetched back from the hash actually comes from the disk. To add this feature
to our memoize function is simple:

use DB_File;

sub memoize {

my ($func, $keygen, $file) = @_;

my %cache;

if (defined $file) {

tie %cache => 'DB_File', $file, O_RDWR|O_CREAT, 0666

or die "Couldn’t access cache file $file: $!; aborting";

}

my $stub = sub {

my $key = $keygen ? $keygen->(@_) : join ',', @_;

$cache{$key} = $func->(@_) unless exists $cache{$key};

return $cache{$key};

};

return $stub;

}

Here we’ve added an optional third parameter, which is the name of the disk file
that will receive the cached data. If supplied, we use tie to tie the hash to the
file. Note that if you don’t use this feature, you pay hardly any cost at all — a
single defined() test at the time you call memoize().

When the cache hash is tied to a disk file in this way, the cache becomes
persistent. Data stored in the cache on one run of the program remains in the
file after the program has exited, and is available to the function the next time
the program is run. The program is incrementally replacing the function with a
lookup table on the disk. The cost to the programmer is nearly zero, since we
did not have to change any of the code in the original function.

If we get tired of waiting for the lookup table to be completely populated,
we can force the issue. We can write a tiny program that does nothing but call the
memoized function over and over with different arguments each time. We start

. 101

it up on Friday afternoon and go home for the weekend. When we come back on
Monday, the persistent cache will have the values of the function precomputed.
When we run our real application, all calls to the memoized function will return
almost instantly, since the values have been saved in the database.

Once again, this may not be a win. Remember, the speed-up from memoiza-
tion is hf − K, where K is the overhead of managing the cache. If K is sufficiently
large, it will overwhelm the gains from the hf part of the formula, as in the
sub { $_[0] * $_[0] } example from Section 3.6. When we store cache data
in a disk file, the overhead K can be many times greater than normal, because
our program will have to make an operating-system request to look in the disk
database.

An alternative and more flexible interface is to allow the user of memoize()
to supply their own tied hash:

sub memoize {

my ($func, $keygen, $cache) = @_;

$cache = {} unless defined $cache;

my $stub = sub {

my $key = $keygen ? $keygen->(@_) : join ',', @_;

$cache->{$key} = $func->(@_) unless exists $cache->{$key};

return $cache->{$key};

};

return $stub;

}

This allows the user to supply a cache that is tied to a disk file using their favorite
DBM implementation, even one we’ve never heard of. They could also pass in an
ordinary hash; that would allow them to erase the cache or to expire old values
from it if they wanted to.

3.10

Most pure functions present an opportunity for caching. Although it may appear
at first that pure functions are rare, they do appear with some frequency. One
place where pure functions are especially common is as the comparator functions
used in sorting.

The Perl built-in sort operator is generic, in that it can sort a list of any kind
of data into any order desired by the program. By default, it sorts a list of strings
into alphabetical order, but the programmer may optionally supply a comparator
function that tells Perl how to reorder sort’s argument list. The comparator

102 Caching and Memoization

function is called repeatedly, each time with two different elements from the list
to be sorted, and must return a negative value if the two elements are in the
correct order, a positive value if the two elements are in the wrong order, and
zero if it doesn’t care. Typically, a comparator function’s return value depends
only on the values of its arguments, the two list items it is comparing, so it is a
pure function.

Probably the simplest example of a comparator function is the comparator
that compares numbers for sorting into numerical order:

@sorted_numbers = sort { $a <=> $b } @numbers;

Here { $a <=> $b } is the comparator function. The sort operator examines
the list of @numbers, sets $a and $b to the numbers it wishes to have compared,
and invokes the comparator function. <=> is a special Perl operator that returns
a negative value if $a is less than $b, a positive value if $a is greater than $b, and
zero if $a and $b are equal.8 cmp is an analogous operator for strings; this is the
default that Perl uses if you don’t specify an explicit comparator.

An alternative syntax uses a named function instead of a bare block:

@sorted_numbers = sort numerically @numbers;

sub numerically { $a <=> $b }

This is equivalent to the bare-block version.
A more interesting example sorts a list of date strings of the form "Apr 16,

1945" into chronological order:

@sorted_dates = sort chronologically @dates;CODE LIBRARY
chrono-1

%m2n =

(jan => 1, feb => 2, mar => 3,

apr => 4, may => 5, jun => 6,

jul => 7, aug => 8, sep => 9,

oct => 10, nov => 11, dec => 12,);

sub chronologically {

my ($am, $ad, $ay) =

($a =˜ /(\w{3}) (\d+), (\d+)/);

8 Subtraction would work equally well here; <=> is used in comparators instead of plain subtraction
because of its documentative value.

. 103

my ($bm, $bd, $by) =

($b =˜ /(\w{3}) (\d+), (\d+)/);

$ay <=> $by

|| $m2n{lc $am} <=> $m2n{lc $bm}

|| $ad <=> $bd;

}

The two date strings to be compared are loaded into $a and $b, as before, and
then split up into $ay, $by, $am, and so forth. $ay and $by, the years, are
compared first. The || operator here is a common idiom in sort comparators
for sorting by secondary keys. The || operator returns its left operand, unless
that is zero, in which case it returns its right operand. If the years are the same,
then $ay <=> $by returns zero, and the || operator passes control to the part
of the expression involving the months, which are used to break the tie. But if
the years are different, then the result of the first <=> is nonzero, and this is the
result of the || expression, instructing sort how to order $a and $b in the result
list without ever having looked at the months or the days. If control passes to
the $am <=> $bm part, the same thing happens. The months are compared; if the
result is conclusive, the function returns immediately, and if the months are the
same, control passes to the final tiebreaker of comparing the days.

Internally, Perl’s sort operator has been implemented with various algo-
rithms that have O(n log n) running time. This means that to sort a list that is
n times larger than another typically takes somewhat more than n times as long.
If the list size doubles, the running time more than doubles. The following table
compares the length of the argument list with the number of calls typically made
to the comparator function:

Length # calls calls / element
5 7 1.40

10 26 2.60
20 60 3.00
40 195 4.87
80 417 5.21

100 569 5.69
1000 9502 9.50

10000 139136 13.91

I got the “# calls” column by generating a list of random numbers of the indicated
length and sorting it with a comparator function that incremented a counter each
time it was called. The number of calls will vary depending on the list and on
the comparator function, but these values are typical.

104 Caching and Memoization

Now consider a list of 10,000 dates. 139,136 calls are made to the comparator
function; each call performs two pattern-match operations, so there are 278,272
pattern matches in all. This means each date is split up into year, month, and
day 27.8 times on average. Since the three components for a given date never
change, it’s clear that 26.8 of these matchings are wasted.

The first thing that might come to mind is to memoize the chronologically
function, but this doesn’t work well in practice. Although sort will call
chronologically repeatedly with the same date, it won’t call it twice on the
same pair of dates (Unless, of course, the input list contains duplicate dates.)
Since the hash keys must incorporate both arguments, the memoized function
will never have a cache hit.

Instead, we’ll do something slightly different, and memoize just the expensive
part of the function. This will require a version of memoize() that can handle a
function that returns a list.

@sorted_dates = sort chronologically @dates;CODE LIBRARY
chrono-2

%m2n =

(jan => 1, feb => 2, mar => 3,

apr => 4, may => 5, jun => 6,

jul => 7, aug => 8, sep => 9,

oct => 10, nov => 11, dec => 12,);

sub chronologically {

my ($am, $ad, $ay) = split_date($a);

my ($bm, $bd, $by) = split_date($b);

$ay <=> $by

|| $m2n{lc $am} <=> $m2n{lc $bm}

|| $ad <=> $bd;

}

sub split_date {

$_[0] =˜ /(\w{3}) (\d+), (\d+)/;

}

If we set up caching on split_date, we’ll still make 278,272 calls to it, but
268,272 will result in cache hits, and only the remaining 10,000 will require
pattern matching. The only catch is that we’ll have to write the caching code by
hand, because split_date returns a list, and our memoize functions deal correctly
only with functions that return scalars.

At this point, we could go in three directions. We could enhance our memoize
function to deal correctly with list-context returns. (Or we could use the CPAN

. 105

Memoize module, which does work correctly for functions that return lists.) We
could write the caching code manually. But it’s more instructive to sidestep the
problem by replacing split_date with a function that returns a scalar. If the
scalar is constructed correctly, we will be able to dispense with the complicated
|| logic in chronologically and just use a simple string compare.

Here’s the idea: We will split the date, as before, but instead of returning a
list of fields, we will pack the fields into a single string. The fields will appear in
the string in the order we need to examine them, with the year first, then the
month, then the day. The string for "Apr 16, 1945" will be "19450416". When
we compare strings with cmp, Perl will stop comparing as soon as possible, so
if one string begins with "1998..." and another with "1996..." Perl will know
the result as soon as it sees the fourth character, and won’t bother to examine the
month or day. String comparison is very fast, likely to beat out a sequence of
<=>s and ||s.

Here’s the modified code:

@sorted_dates = sort chronologically @dates; CODE LIBRARY
chrono-3

%m2n =

(jan => 1, feb => 2, mar => 3,

apr => 4, may => 5, jun => 6,

jul => 7, aug => 8, sep => 9,

oct => 10, nov => 11, dec => 12,);

sub chronologically {

date_to_string($a) cmp date_to_string($b)

}

sub date_to_string {

my ($m, $d, $y) = ($_[0] =˜ /(\w{3}) (\d+), (\d+)/);

sprintf "%04d%02d%02d", $y, $m2n{lc $m}, $d;

}

Now we can memoize date_to_string. Whether this will win over the previous
version depends on whether the sprintf plus cmp is faster than the <=> plus ||.
As usual, a benchmark is required; it turns out that the code with the sprintf is
about twice as fast.9

9 This comes as a surprise to many people, especially C programmers who expect sprintf to be
slow. While sprintf is slow, so is Perl, so that dispatching a bunch of extra <=> and || operations

106 Caching and Memoization

Sorting is often one of those places in the program where we need to
squeeze out as much performance as possible. For a list of 10,000 dates, we call
sprintf exactly 10,000 times (once date_to_string is memoized) but we still
call date_to_string itself 278,272 times. As the list of dates becomes longer, this
disparity will increase, and the function calls will eventually come to dominate
the running time of the sort.

We can get more speed by simplifying the cache handling and eliminating the
268,272 extra function calls. To do this, we go back to handwritten caching code:

{ my %cache;CODE LIBRARY
chrono-orc sub chronologically {

($cache{$a} ||= date_to_string($a))

cmp

($cache{$b} ||= date_to_string($b))

}

}

Here we make use of the ||= operator, which seems almost custom-made for
caching applications. $x ||= $y yields the value of $x if it is true; if not, it
assigns $y to $x and yields the value of $y. $cache{$a} ||= date_to_string($a)

checks to see if $cache{$a} has a true value; if so, that is the value used in the
comparison with the cmp operator. If nothing is cached yet, then $cache{$a} is
false, and chronologically calls date_to_string, stores the result in the cache,
and uses the result in the comparison. This inline cache technique is called the
Orcish Maneuver, because its essential features are the || and the cache.10

Memoizing date_to_string yields a two-and-a-half-fold speed-up; replac-
ing the memoization with the Orcish Maneuver yields an additional twofold
speed-up.

Astute readers will note that the Orcish Maneuver doesn’t always work quite
right. In this example, it’s impossible for date_to_string to ever return a false
value. But let’s return for a moment to the example where we compute the total
amount invested for each investor:

{ my %cache;

sub by_total_invested {

($cache{$a} ||= total_invested($a))

takes a long time compared to sprintf. This is just another example of why the benchmark really
is necessary.

10 Joseph Hall, author of Effective Perl Programming, is responsible for this name.

. 107

<=>

($cache{$b} ||= total_invested($b))

}

}

Suppose Luke the Hermit has invested no money at all. The first time he appears
in by_total_invested, we call total_invested for Luke, and we get back 0. We
store this 0 in the cache under Luke’s key. The next time Luke appears, we check
the cache and find that the value stored there is 0. Because this value is false, we
call total_invested again, even though we had a cache hit. The problem here
is that the ||= operator doesn’t distinguish between a cache miss and a cache hit
where the cached value happens to be false.

The Lisp people have a name for this phenomenon: They call it the semipredi-
cate problem. A predicate is a function that returns a boolean value. A semipredicate
can return a specific false value, indicating failure, or one of many meaningful
true values, indicating success. The $cache{$a} is a semipredicate because it
might return 0, or any of an infinity of useful true values. We get into trouble
when 0 is also one of the true values, because we can’t distinguish it from the 0
that means false. This is the semipredicate problem.

In our present example, the semipredicate problem won’t cause much trouble.
The only cost is a few extra calls to total_invested for people who haven’t
invested any money. If we find that these extra calls are slowing down our sorting
significantly (unlikely, but possible) we can replace the comparator function with
the following version:

{ my %cache;

sub by_total_invested {

(exists $cache{$a} ? $cache{$a} : ($cache{$a} = total_invested($a)))

<=>

(exists $cache{$b} ? $cache{$b} : ($cache{$b} = total_invested($b)))

}

}

This version uses the reliable exists operator to check to see if the cache
is populated. Even if the value stored in the cache is false, exists will still
return true. Beware, though, that this costs about 10% more than the simpler
version.

There’s an alternative that costs hardly anything extra, but does have the
disadvantage of being rather bizarre. It’s based on the following trick: When the
Perl string "0e0" is used as a number, it behaves exactly like 0; the e0 is interpreted

108 Caching and Memoization

by Perl as a scientific notation exponent. But unlike an ordinary 0, the string
"0e0" is true rather than false.11

If we write by_total_invested like this, we avoid the semipredicate problem
with hardly any extra cost:

{ my %cache;

sub by_total_invested {

($cache{$a} ||= total_invested($a) || "0e0")

<=>

($cache{$b} ||= total_invested($b) || "0e0")

}

}

If total_invested returns zero, the function caches "0e0" instead. The next time
we look up the total invested by the same customer, the function sees "0e0" in
the cache, and this value is true, so it doesn’t call total_invested a second time.
This "0e0" is the value given to the <=> operator for comparison, but in a numeric
comparison it behaves exactly like 0, which is just what we want. The speed cost
of the additional || operation, invoked only when a false value is returned by
total_invested(), is tiny.

3.11

If you’re trying to explain to a C programmer why Perl is good, automatic
memoization makes a wonderful example. Almost all programmers are familiar
with caching techniques. Even if they don’t use any caching techniques in their
own programs, they are certainly familiar with the concept, from caching in
web browsers, in the cache memory of their computer, in the DNS server, in
their web proxy server, or elsewhere. Caching, like most simple, useful ideas, is
ubiquitous.

Adding caching isn’t too much trouble, but it takes at least a few minutes to
modify the code. With all modifications, there’s a chance that you might make
a mistake, which has to be factored into the average time. Once you’re done, it

11 "0e0" is hardly unique; "00" will also work, as will any string that begins with a 0 followed
by a non-numeral character, such as "0!!!!". Strings like "0!!!!", however, will generate an
“Argument isn’t numeric” warning if warnings are enabled. One string commonly used when a
zero-but-true value is desired is "0 but true". Perl’s warning system has a special case in it that
suppresses the usual “isn’t numeric” warning for this string.

. 109

may turn out that the caching was a bad idea, because the cache management
overhead dominates the running time of the function, or because there aren’t as
many cache hits on a typical run as you expected there to be; then you have to
take the caching code out, and again you run the risk of making a mistake. Not
to overstate the problems, of course, but it will take at least a few minutes in each
direction.

With memoization, adding the caching code no longer takes minutes; it
takes seconds. You add one line of code:

memoize 'myfunction';

and it is impossible to make a serious mistake and break the function. If the
memoization turns out to have been a bad idea, you can turn it off again in
one second. Most programmers can appreciate the convenience of this. If you
have five minutes to explain to a C programmer what benefits Perl offers over C,
memoization is an excellent example to use.

3.12

It may be tempting at this point to say that memoization is only an incremental
improvement over manual caching techniques, because it does the same thing,
and the only additional benefit is that you can turn it on and off more quickly.
But that isn’t really true. When a speed and convenience difference between tools
is large enough, it changes the way you think about the tool and the ways you
can use it. To automatically memoize a function takes 1/100 as much time as to
write caching code for it manually. This is the same as the difference between
the speed of an airplane and the speed of an oxcart. To say that the airplane is
just a faster oxcart is to miss something essential: The quantitative difference is
so large that it becomes a substantive qualitative difference as well.

For example, with automatic memoization, it becomes possible to add
caching behavior to functions without having to consider the performance details
carefully in advance. Memoization is so easy that it can pay to adopt a strategy
of “shoot first and ask questions later.” If a function is slow, try slapping some
caching onto it and see if it helps matters. If a recursive function might have bad
recursion behavior, put in some caching and see if the problem goes away. If not,
you can take the caching away again and investigate more thoroughly. When the
total cost is ten seconds of programming time, you can try this without having to
think much in advance about whether it will be successful. With manual caching,
you would have to spend at least a quarter hour, which is too much to invest on
a mere fishing expedition.

110 Caching and Memoization

With automatic memoization, you can enable caching behavior at run time.
For example:

sub function {

if (++$CALLS == 100) { memoize 'function'}

...

}

Here we don’t bother to memoize the function until partway through the pro-
gram’s run. When the function realizes it’s being heavily used, it enables caching
behavior. To do the same thing without automatic memoization requires a rewrite
of the function rather than the addition of a single line.

3.12.1 Profiling and Performance Analysis

Automatic memoization allows caching to be used in profiling and performance
analysis in a way that would be impractical otherwise. The typical situation
involves a large application that runs too slowly. We would like to speed it
up. We will do this by rewriting parts of the program to be faster, perhaps by
introducing a better algorithm, and possibly at the expense of a certain amount
of clarity or maintainability.

Trying to speed up every part of the program is a bad allocation of resources.
This is because of what is known as the“90-10 rule,” which says that 90% of the
execution time of a program takes place in only 10% of the code, the rest being
initialization code that is executed only once, or special-case code such as error
handlers that are executed rarely or never. If we work over the entire program
and speed up every part by 5%, we have a 5% gain. But if we can identify and
rewrite just the crucial 10% to the same degree, we will get a net 4.5% gain in
the program’s total run time at only 10% of the cost; the cost-benefit ratio is nine
times as large. So before we optimize, we would like very much to identify the
parts of the program that contribute most to the run time, and concentrate on
improving just those parts.

It’s sad when a programmer spends a week carefully optimizing a subroutine
to run 20% faster, only to discover that the program spent only 2% of its total
execution time in that subroutine, and that the week of hard work has yielded only
an 0.4% speed-up overall. Historically, programmers have been bad at guessing
which parts of the program are heavily used; we need real measurements.

Traditionally, measurements are done using a tool called a profiler. The
program is run in a special profiling environment that causes it to dump out
a record of what it is doing every so often (typically many times per second).

. 111

Afterwards, the data is massaged into a report that lists the subroutines in which
the program spends the most execution time. There are profiler tools for Perl, but
they can be strange and hard to use. Automatic memoization is an alternative.

Run the program once and time how long it takes. Then guess which parts
of the program are bottlenecks, and memoize them. Arrange for the memoized
data to be stored in a persistent file. (Remember, this requires adding only one
line of code to the program.) Run the program a second time; this will populate
the cache on the disk. Run the program a third time. All calls to the memoized
functions will return almost immediately, because the data is residing in a disk
database; the functions do no work at all beyond what is required to get the
answers from the database. On the third run, you are simulating how quickly the
program would run if it were possible to eliminate the time taken by the target
functions. If this run is substantially faster than the unmemoized run time, you
have some candidates for optimization; if the times are similar, you know that
you should look elsewhere.

You might wonder why not simply leave the memoization in place if the
memoized run is substantially shorter, and the answer is that while memoization
might cause the target functions to run faster, it might also cause them not
to work correctly. Suppose you suspect that the bottleneck function is the one
that formats the report. While memoizing this function and having it deliver a
precached report may cause it to run faster, it is probably not what the recipient
of the report would prefer.

3.12.2 Automatic Profiling

Another profiling technique, one that’s even more flexible, uses the techniques
we’ve seen in this chapter, but without any actual caching. The memoize func-
tion takes an existing function and puts a cache-managing front-end onto it.
There’s no reason why this front-end has to do cache management; it could do
something else:

use Time::HiRes 'time'; CODE LIBRARY
profilemy (%time, %calls);

sub profile {

my ($func, $name) = @_;

my $stub = sub {

my $start = time;

my $return = $func->(@_);

my $end = time;

112 Caching and Memoization

my $elapsed = $end - $start;

$calls{$name} += 1;

$time{$name} += $elapsed;

return $return;

};

return $stub;

}

The profile function shown here is similar in structure to the memoize function
we saw earlier. Like memoize, it takes a function as its argument and constructs
and returns a stub, which may be called directly or installed in the symbol table
in place of the original.

When the stub is invoked, it records the current time in $start. Normally the
Perl time function returns the current time to the nearest second; the Time::HiRes
module replaces the time function with one that has finer granularity, if possible.
The stub calls the real function and saves its return value. Then it computes the
total elapsed time and updates two hashes. One hash records, for each function,
how many calls have been made to that function; the stub simply increments
that count. The other hash records the total elapsed time spent executing each
function; the stub adds the elapsed time for the just-completed call to the total.

At the end of program execution, we can print out a report:

END {

printf STDERR "%-12s %9s %6s\n", "Function", "# calls", "Elapsed";

for my $name (sort {$time{$b} <=> $time{$a}} (keys %time)) {

printf STDERR "%-12s %9d %6.2f\n", $name, $calls{$name}, $time{$name};

}

}

The output will look something like this:

Function # calls Elapsed
printout 1 10.21
searchfor 1 0.34

page 1 0.06
check_file 18 0.01

This is output from the perldoc program that comes standard with Perl. From
this output, we can see that most of the execution time is occurring in the
printout function; if we want to make perldoc faster, this is the function we
should concentrate on.

. 113

3.12.3 Hooks

This is clearly a very rudimentary profiling tool. A better version would use the
times() function to measure CPU time consumed instead of wall-clock time.
But the flexibility of the technique should be clear; we can put an arbitrary
front-end onto a function, or change the front-end at run time. The front-end
can perform caching, or keep track of function call data; it could validate the
function arguments if we wanted, enforce pre- and post-conditions, or whatever
else we like.

