
 7
-

Our memoize() function of Chapter 3 was a “function factory,” building stub
functions that served as replacements for other functions. The technique of using
functions to build other functions is extremely powerful. In this chapter, we’ll
look at a technique called currying, which transforms an ordinary function into
a function factory for manufacturing more functions, and at other techniques
for transforming one function into another.

A higher-order function is a function that operates on other functions instead
of on data values. Some of these take data arguments and manufacture functions
to order; others, like the imap() function of Chapter 4, transform one function
into another one.

7.1

We have seen several times how to use callbacks to parametrize the behavior of
a function so that it can serve many purposes. For example, in Section 1.5 we
saw how a generic directory-walking function could be used to print a list of
dangling symbolic links, to return a list of interesting files, or to copy an entire
directory.

325

326 Higher-Order Functions and Currying

Callbacks are a way to make functions more general by supplying other
functions to them as arguments. We saw how to write functions that used closures
to generate other functions as return values. The currying technique we’ll see
combines closures and callbacks, turning an ordinary function into a factory
that manufactures functions on demand.

Recall our walk_html() function from Chapter 1. Its arguments were an
HTML tree and a pair of callbacks, one to handle plain text and one to handle
tagged text. We found a way to use this to extract all the text that was enclosed
in <h1> tags:

@tagged_texts = walk_html($tree, sub { ['MAYBE', $_[0]] },

\&promote_if_h1tag);

sub promote_if_h1tag {

my $element = shift;

if ($element->{_tag} eq 'h1') {

return ['KEEPER', join '', map {$_->[1]} @_];

} else {

return @_;

}

}

sub extract_headers {

my $tree = shift;

my @tagged_texts = walk_html($tree, sub { ['MAYBE', $_[0]] },

\&promote_if_h1tag);

my @keepers = grep { $_->[0] eq 'KEEPER' } @tagged_texts;

my @keeper_text = map { $_->[1] } @keepers;

my $header_text = join '', @keeper_text;

return $header_text;

}

We then observed that it would make sense to abstract the <h1> out of
promote_if_h1tag(), to make it more general:

sub promote_if {

my $is_interesting = shift;

my $element = shift;

if ($is_interesting->($element->{_tag}) {

return ['keeper', join '', map {$_->[1]} @_];

} else {

. 327

return @_;

}

}

my @tagged_texts = walk_html($tree,

sub { ['maybe', $_[0]] },

sub { promote_if(

sub { $_[0] eq 'h1' },

$_[0])

});

The second callback in walk_html() is rather peculiar. It’s an anonymous function
that we manufactured solely to call promote_if() with the right arguments. The
previous version of the code was tidier. What we need is a way to get promote_if()
to manufacture the promote_if_h1tag() function we need. This seems like it
should be possible, because promote_if() already knows how to perform the
task that we want promote_if_h1tag() to perform. All that we need to do is to
have promote_if() wrap up that behavior into a new function:

sub promote_if { CODE LIBRARY
promote_if_currmy $is_interesting = shift;

return sub {

my $element = shift;

if ($is_interesting->($element->{_tag}) {

return ['keeper', join '', map {$_->[1]} @_];

} else {

return @_;

}

}

}

Instead of accepting both arguments right away, promote_if() now gets the
$is_interesting callback only, and manufactures a new function that, given an
HTML element, promotes it if it’s considered interesting. Making this change
to promote_if(), to turn it from a function of two arguments into a function
of one argument that returns a function of one argument, is called currying it,
and the version of promote_if() immediately above is the curried version of
promote_if().1

1 Currying is so-named because it was popularized by Haskell B. Curry in 1930, although it had
been discovered by Gottlob Frege in 1893 and rediscovered by Moses Schönfinkel in 1924.

328 Higher-Order Functions and Currying

The happy outcome is that the call to walk_html() is now much simpler:

my @tagged_texts = walk_html($tree,

sub { ['maybe', $_[0]] },

promote_if(sub { $_[0] eq 'h1' }),

);

Once you get used to the idea of currying, you start to see opportunities to do
it all over. Recall our functions from Chapter 6 for adding and multiplying two
streams together element-by-element: add2() and mul2():

sub add2 {

my ($s, $t) = @_;

return unless $s && $t;

node(head($s) + head($t),

promise { add2(tail($s), tail($t)) });

}

sub mul2 {

my ($s, $t) = @_;

return unless $s && $t;

node(head($s) * head($t),

promise { mul2(tail($s), tail($t)) });

}

These functions are almost identical. We saw in Chapter 1 that two functions
with similar code can often be combined into a single function that accepts a
callback parameter. In this case, the callback, $op, specifies the operation to use
to combine head($s) and head($t):

sub combine2 {

my ($s, $t, $op) = @_;

return unless $s && $t;

node($op->(head($s), head($t)),

promise { combine2(tail($s), tail($t), $op) });

}

Now we can build add2() and mul2() from combine2():

sub add2 { combine2(@_, sub { $_[0] + $_[1] }) }

sub mul2 { combine2(@_, sub { $_[0] * $_[1] }) }

. 329

Since a major use of combine2() is to manufacture such functions, it would be
more convenient for combine2() to do what we wanted in the first place. We can
turn combine2() into a factory that manufactures stream-combining functions
by currying it:

sub combine2 { CODE LIBRARY
combine2my $op = shift;

return sub {

my ($s, $t) = @_;

return unless $s && $t;

node($op->(head($s), head($t)),

promise { combine2($op)->(tail($s), tail($t))});

};

}

Now we have simply:

$add2 = combine2(sub { $_[0] + $_[1] });

$mul2 = combine2(sub { $_[0] * $_[1] });

This may also be fractionally more efficient, since we won’t have to do an extra
function call every time we call add2() or mul2(). add2() is the function to add
the two streams, rather than a function that re-invokes combine2() in a way that
adds two streams.

If we want these functions to stick around, we can give them names, as we
just did; alternatively, we can use them anonymously:

my $catstrs = combine2(sub { "$_[0]$_[1]" })->($s, $t);

Instead of the scale() function we saw earlier, we might prefer this curried
version:

sub scale {

my $s = shift;

return sub {

my $c = shift;

return if $c == 0;

transform { $_[0] * $c } $s;

}

}

330 Higher-Order Functions and Currying

scale() is now a function factory. Instead of taking a stream and a number
and returning a new stream, it takes a stream and manufactures a function that
produces new streams. $scale_s = scale($s) returns a function for scaling $s;
given a numeric argument, say $n, $scale_s produces a stream that has the
elements of $s scaled by $n. For example, $scale_s->(2) returns a stream whose
every element is twice $s’s, and $scale_s->(3) returns a stream whose every
element is three times $s’s. If we’re planning to scale the same stream by several
different factors, it might make sense to have a single scale function to generate
all the outputs.

Depending on how we’re using it, we might have preferred to curry the
function arguments in the other order:

sub scale {CODE LIBRARY
scale my $c = shift;

return sub {

my $s = shift;

transform { $_[0] * $c } $s;

}

}

Now scale() is a factory for manufacturing scaling functions. scale(2) returns
a function that takes any stream and doubles it; scale(3) returns a function that
takes any stream and triples it. We could write $double = scale(2) and then use
$double->($s) to double $s, or scale(2)->($s) to double $s.

If you don’t like the extra arrows in $double->($s) you can get rid of them
by using Perl’s glob feature, as we did in Chapter 3:

*double = scale(2);

$s2 = double($s);

Similarly, in Chapter 6, we defined a slope() function that returned the slope
of some other function at a particular point:

sub slope {

my ($f, $x) = @_;

my $e = 0.00000095367431640625;

($f->($x+$e) - $f->($x-$e)) / (2*$e);

}

. 331

We could make this more flexible by currying the $x argument:

sub slope { CODE LIBRARY
slope0my $f = shift;

my $e = 0.00000095367431640625;

return sub {

my $x = shift;

($f->($x+$e) - $f->($x-$e)) / (2*$e);

};

}

slope() now takes a function and returns its derivative function! By evaluat-
ing the derivative function at a particular point, we compute the slope at that
point.

If we like, we can use Perl’s polymorphism to put both behaviors into the
same function:

sub slope { CODE LIBRARY
slopemy $f = shift;

my $e = 0.00000095367431640625;

my $d = sub {

my ($x) = shift;

($f->($x+$e) - $f->($x-$e)) / (2*$e);

};

return @_ ? $d->(shift) : $d;

}

Now we can call slope($f, $x) as before, to compute the slope of $f at the point
$x, or we can call slope($f) and get back the derivative function of $f.

Currying can be a good habit to get into. Earlier, we wrote:

sub iterate_function {

my ($f, $x) = @_;

my $s;

$s = node($x, promise { &transform($f, $s) });

}

But it’s almost as easy to write it this way instead:

sub iterate_function { CODE LIBRARY
iterate_functionmy $f = shift;

332 Higher-Order Functions and Currying

return sub {

my $x = shift;

my $s;

$s = node($x, promise { &transform($f, $s) });

};

}

It requires hardly any extra thought to do it this way, and the payoff is sub-
stantially increased functionality. We now have a function that manufactures
stream-building functions to order. We could construct upfrom() as a special
case of iterate_function(); for example:

*upfrom = iterate_function(sub { $_[0] + 1 });

Or similarly, our earlier example of pow2_from():

*pow2_from = iterate_function(sub { $_[0] * 2 });

One final lexical point about currying: When currying a recursive function,
it’s often possible to get a small time and memory performance improve-
ment by tightening up the recursion. For example, consider combine2()

again:

sub combine2 {

my $op = shift;

return sub {

my ($s, $t) = @_;

return unless $s && $t;

node($op->(head($s), head($t)),

promise { combine2($op)->(tail($s), tail($t)) });

};

}

combine2($op) will return the same result function every time. So we should be
able to get a speed-up by caching its value and using the cached value in the
promise instead of repeatedly calling combine2($op). Moreover, combine2($op)
is precisely the value that combine2() is about to return anyway. So we
can change this to:

sub combine2 {CODE LIBRARY
combine2-shorter my $op = shift;

. - 333

my $r;

$r = sub {

my ($s, $t) = @_;

return unless $s && $t;

node($op->(head($s), head($t)),

promise { $r->(tail($s), tail($t)) });

};

}

Now the promise no longer needs to call combine2(); we’ve cached the value
that combine2() is about to return by storing it in $r, and the promise can call
$r directly. The code is also easier to understand this way: Now the promise
says explicitly that the function will be calling itself on the tails of the two
streams.

These curried functions are examples of higher-order functions. Ordinary
functions operate on values: You put some values in, and you get some other
values out. Higher-order functions are functions that operate on other functions:
You put some functions in, and you get some other functions out. For example,
in combine2() we put in a function to operate on two scalars and we got out an
analogous function to operate on two streams.

7.2 -

Probably the two most fundamental higher-order functions for any list or other
kind of sequence are analogs of map() and grep(). map() and grep() are higher-
order functions because each of them takes an argument that is itself another
function. We’ve already seen versions of map() and grep() for iterators and
streams. Perl’s standard map() and grep() each take a function and a list and
return a new list; for example:

map { $_ * 2 } (1..5); # returns 2, 4, 6, 8, 10

grep { $_ % 2 == 0 } (1..10); # returns 2, 4, 6, 8, 10

Often it’s more convenient to have curried versions of these functions:

sub cmap (&) { CODE LIBRARY
cmapmy $f = shift;

my $r = sub {

334 Higher-Order Functions and Currying

my @result;

for (@_) {

push @result, $f->($_);

}

@result;

};

return $r;

}

sub cgrep (&) {CODE LIBRARY
cgrep

my $f = shift;

my $r = sub {

my @result;

for (@_) {

push @result, $_ if $f->($_);

}

@result;

};

return $r;

}

These functions should be called like this:

$double = cmap { $_ * 2 };

$find_slashdot = cgrep { $_->{referer} =˜ /slashdot/i };

After which $double->(1..5) returns (2, 4, 6, 8, 10) and $find_slashdot

->(weblog()) returns the web log records that represent referrals from Slashdot.
It may be tempting to try to make cmap() and cgrep() polymorphic, as we

did with slope() (I was tempted, anyway.):

sub cmap (&;@) {

my $f = shift;

my $r = sub {

my @result;

for (@_) {

push @result, $f->($_);

}

@result;

};

. - 335

return @_ ? $r->(@_) : $r;

}

Then we would also be able to use cmap() and cgrep() like regular map() and
grep():

@doubles = cmap { $_ * 2 } (1..5);

@evens = cgrep { $_ % 2 == 0 } (1..10);

Unfortunately, this apparently happy notation hides an evil surprise:

@doubles = cmap { $_ * 2 } @some_array;

If @some_array is empty, @doubles is assigned a reference to a doubling function.

7.2.1 Automatic Currying

We’ve written the same code several times to implement curried functions:

sub some_curried_function {

my $first_arg = shift;

my $r = sub {

...

};

return @_ ? $r->(@_) : $r;

}

(Possibly with the polymorphism trick omitted from the final line.)
As usual, once we recognize this pattern, we should see if it makes sense to

abstract it into a function:

package Curry; CODE LIBRARY
Curry.pmuse base 'Exporter';

@EXPORT = ('curry');

@EXPORT_OK = qw(curry_listfunc curry_n);

sub curry {

my $f = shift;

return sub {

my $first_arg = shift;

my $r = sub { $f->($first_arg, @_) };

336 Higher-Order Functions and Currying

return @_ ? $r->(@_) : $r;

};

}

sub curry_listfunc {

my $f = shift;

return sub {

my $first_arg = shift;

return sub { $f->($first_arg, @_) };

};

}

1;

curry() takes any function and returns a curried version of that function. For
example, consider the imap() function from Chapter 4:

sub imap (&$) {

my ($transform, $it) = @_;

return sub {

my $next = NEXTVAL($it);

return unless defined $next;

return $transform->($next);

}

}

imap() is analogous to map(), but operates on iterators rather than on lists. We
might use it like this:

my $doubles_iterator = imap { $_[0] * 2 } $it;

If we end up doubling a lot of iterators, we have to repeat the {$_[0] * 2} part:

my $doubles_a = imap { $_[0] * 2 } $it_a;

my $doubles_b = imap { $_[0] * 2 } $it_b;

my $doubles_c = imap { $_[0] * 2 } $it_c;

We might wish we had a single, special-purpose function for doubling every
element of an iterator, so that we could write instead:

my $doubles_a = double $it_a;

my $doubles_b = double $it_b;

my $doubles_c = double $it_c;

. - 337

or even:

my ($doubles_a, $doubles_b, $doubles_c)

= map double($_), $it_a, $it_b, $it_c;

If we had written imap() in a curried style, we could have done:

*double = imap { $_[0] * 2 };

but we didn’t, so we can’t. But that’s no problem, because curry() will
manufacture a curried version of imap() on the fly:

*double = curry(\&imap)->(sub { $_[0] * 2 });

Since the curried imap() function came in handy once, perhaps we should keep
it around in case we need it again:

*c_imap = curry(\&imap);

Then to manufacture double() we do:

*double = c_imap(sub { $_[0] * 2 });

7.2.2 Prototypes

The only drawback of this approach is that we lose imap()’s pretty calling syntax,
which is enabled by the (&@) prototype at compile time. We can get it back,
although the results are somewhat peculiar. First, we modify curry() so that the
function it manufactures has the appropriate prototype:

sub curry {

my $f = shift;

return sub (&;@) {

my $first_arg = shift;

my $r = sub { $f->($first_arg, @_) };

return @_ ? $r->(@_) : $r;

};

}

338 Higher-Order Functions and Currying

Then we call curry() at compile time instead of at run time:

BEGIN { *c_imap = curry (\&imap); }

Now we can say:

*double = c_imap { $_[0] * 2 };

and we can still use c_imap() in place of regular imap():

$doubles_a = c_imap { $_[0] * 2 } $it_a;

The problem with this technique is that the prototype must be hardwired into
curry(), so now it will generate only curried functions with the prototype (&;@).
This isn’t a problem for functions like c_imap() or c_grep(), which would have
had that prototype anyway. But that prototype is inappropriate for the curried
version of the scale() function from Chapter 6. The uncurried version was:

sub scale {

my ($s, $c) = @_;

$s->transform(sub { $_[0]*$c });

}

curry(\&scale) returns a function that behaves like this:

sub {

my $s = shift;

my $r = sub { scale($s, @_) };

return @_ ? $r->(@_) : $r;

}

The internals of this function are correct, and it will work just fine, as long
as it doesn’t have a (&;@) prototype. Such a prototype would be inappropriate,
since the function is expecting to get one or two scalar arguments. The correct
prototype would be ($;$). But if we did:

BEGIN { *c_scale = curry(\&scale) }

then the resulting c_scale() function wouldn’t work, because it would have a
(&;@) prototype when we expected to call it as though it had a ($;$) prototype.

. - 339

We want to call it in one of these two ways:

my $double = c_scale(2);

my $doubled_it = c_scale(2, $it);

but because c_scale() would have a prototype of (&;@), these both would be
syntax errors, yielding:

Type of arg 1 to main::c_scale must be block or sub {} (not

constant item)...

This isn’t a show-stopper. This works:

*c_scale = curry(\&scale);

my $double = c_scale(2);

my $doubled_it = c_scale(2, $it);

Here the call to c_scale() is compiled, with no prototype, before *c_scale is
assigned to; the call to curry() that sets up the bad prototype occurs too late to
foul up our attempt to (correctly) call c_scale().

But now we have a somewhat confusing situation. Our curry() function
creates curried functions with (&;@) prototypes, and these prototypes may be
inappropriate. But the prototypes are inoperative unless curry() is called in a
BEGIN block. To add to the confusion, this doesn’t work:

*c_scale = curry(\&scale);

my $double = eval 'c_scale(2)';

because, once again, the call to c_scale() has been compiled after the prototype
was set up by curry().

There isn’t really any easy way to fix this. The obvious thing to do is to tell
curry() what prototype we desire by supplying it with an optional parameter:

Doesn’t really work

sub curry {

my $f = shift;

my $PROTOTYPE = shift;

return sub ($PROTOTYPE) {

my $first_arg = shift;

my $r = sub { $f->($first_arg, @_) };

return @_ ? $r->(@_) : $r;

};

}

340 Higher-Order Functions and Currying

Unfortunately, this is illegal; ($PROTOTYPE) does not indicate that
the desired prototype is stored in $PROTOTYPE. Perl 5.8.1 provides a
Scalar::Util::set_prototype function to set the prototype of a particular
function:

Doesn’t work before 5.8.1CODE LIBRARY
curry-set_proto use Scalar::Util 'set_prototype';

sub curry {

my $f = shift;

my $PROTOTYPE = shift;

set_prototype(sub {

my $first_arg = shift;

my $r = sub { $f->($first_arg, @_) };

return @_ ? $r->(@_) : $r;

}, $PROTOTYPE);

}

If you don’t have 5.8.1 yet, the only way to dynamically specify the prototype of
a function is to use string eval:

sub curry {CODE LIBRARY
curry_eval my $f = shift;

my $PROTOTYPE = shift;

$PROTOTYPE = "($PROTOTYPE)" if defined $PROTOTYPE;

my $CODE = q{sub PROTOTYPE {

my $first_arg = shift;

my $r = sub { $f->($first_arg, @_) };

return @_ ? $r->((@_) : $r;

}};

$CODE =˜ s/PROTOTYPE/$PROTOTYPE/;

eval $CODE;

}

7.2.3 More Currying

We can extend the idea of curry() and build a function that generates a generic
curried version of another function:

sub curry_n {

my $N = shift;

my $f = shift;

. - 341

my $c;

$c = sub {

if (@_ >= $N) { $f->(@_) }

else {

my @a = @_;

curry_n($N-@a, sub { $f->(@a, @_) });

}

};

}

curry_n() takes two arguments: a number N, and a function f, which expects
at least N arguments. The result is a new function, c, which does the same
thing f does, but which accepts curried arguments. If c is called with N or more
arguments, it just passes them on to f and returns the result. If there are fewer
than N arguments, c generates a new function that remembers the arguments
that were passed; if this new function is called with the remaining arguments,
both old and new arguments are given to f. For example:

*add = curry_n(2, sub { $_[0] + $_[1] });

And now we can call:

add(2, 3); # Returns 5

or:

*increment = add(1);

increment(8); # return 9

or perhaps more realistically:

*csubstr = curry_n(3, sub { defined $_[3] ?

substr($_[0], $_[1], $_[2], $_[3]) :

substr($_[0], $_[1], $_[2]) });

Then we can use any of:

$target = "I like pie";

Just like regular substr

$ss = csubstr($target, $start, $length);

csubstr($target, $start, $length, $replacement);

342 Higher-Order Functions and Currying

Not just like regular substr

This '$part' function gets two arguments: a start position
and a length; it returns the appropriate part of $target.

$part = csubstr($target);

my $ss = $part->($start, $length);

This function gets an argument N and returns that many characters
from the beginning of $target.

$first_N_chars = csubstr($target, 0);

my $prefix_3 = $first_N_chars->(3); # "I l"

my $prefix_7 = $first_N_chars->(7); # "I like "

7.2.4 Yet More Currying

Many of the functions we saw earlier in the book would benefit from currying.
For example, dir_walk() from Chapter 1:

sub dir_walk {

my ($top, $filefunc, $dirfunc) = @_;

my $DIR;

if (-d $top) {

my $file;

unless (opendir $DIR, $top) {

warn "Couldn’t open directory $code: $!; skipping.\n";

return;

}

my @results;

while ($file = readdir $DIR) {

next if $file eq '.' || $file eq '..';

push @results, dir_walk("$top/$file", $filefunc, $dirfunc);

}

return $dirfunc->($top, @results);

} else {

return $filefunc->($top);

}

}

Here we specify a top directory and two callback functions. But the callback
functions are constant through any call to dir_walk(), and we might like to

. reduce() combine() 343

specify them in advance, because we might know them well before we know
which directories we want to search. The conversion is easy:

sub dir_walk { CODE LIBRARY
dir-walk-curriedunshift @_, undef if @_ < 3;

my ($top, $filefunc, $dirfunc) = @_;

my $r;

$r = sub {

my $DIR;

my $top = shift;

if (-d $top) {

my $file;

unless (opendir $DIR, $top) {

warn "Couldn’t open directory $code: $!; skipping.\n";

return;

}

my @results;

while ($file = readdir $DIR) {

next if $file eq '.' || $file eq '..';

push @results, $r->("$top/$file");

}

return $dirfunc->($top, @results);

} else {

return $filefunc->($top);

}

};

defined($top) ? $r->($top) : $r;

}

We can still call dir_walk($top, $filefunc, $dirfunc) and get the same result,
or we can omit the $top argument (or pass undef) and get back a specialized file-
walking function. As a minor added bonus, the recursive call will be fractionally
more efficient because the callback arguments don’t need to be explicitly passed.

7.3 reduce() combine()

The standard Perl List::Utilmodule provides several commonly requested func-
tions that are not built-in to Perl. These include max() and min() functions,

344 Higher-Order Functions and Currying

which respectively return the largest and smallest numbers in their argument
lists, maxstr() and minstr(), which are the analogous functions for strings; and
sum(), which returns the sum of the numbers in a list.

If we write sample code for these five functions, we’ll see the similarity
immediately:

sub max { my $max = shift;

for (@_) { $max = $_ > $max ? $_ : $max }

return $max;

}

sub min { my $min = shift;

for (@_) { $min = $_ < $min ? $_ : $min }

return $min;

}

sub maxstr { my $max = shift;

for (@_) { $max = $_ gt $max ? $_ : $max }

return $max;

}

sub minstr { my $min = shift;

for (@_) { $min = $_ lt $min ? $_ : $min }

return $min;

}

sub sum { my $sum = shift;

for (@_) { $sum = $sum + $_ }

return $sum;

}

Generalizing this gives us the reduce() function that is also provided by
List::Util:

sub reduce { my $code = shift;

my $val = shift;

for (@_) { $val = $code->($val, $_) }

return $val;

}

(List::Util::reduce is actually written in C for speed, but what it does is equiv-
alent to this Perl code.) The idea is that the function will scan the list one element

. reduce() combine() 345

at a time, accumulating a “total” of some sort. We provide a function ($code)
that says how to compute the new total, given the old total (first argument) and
the current element (second argument). If our goal is just to add up all the list
elements, then we compute the total at each stage by adding the previous total
to the current element:

reduce(sub { $_[0] + $_[1] }, @VALUES) == sum(@VALUES)

If our goal is to find the maximum element, then the “total” is actually the
maximum so far. Then we compute the total at each stage by taking whichever
of the current maximum and the current element is larger:

reduce(sub { $_[0] > $_[1] ? $_[0] : $_[1] }, @VALUES) == max(@VALUES)

The reduce() function provided by List::Util is easier to call than the preceding
one. It places the total-so-far in $a and the current list element into $b before
invoking the callback, so that we can write:

reduce(sub { $a + $b }, @VALUES)

reduce(sub { $a > $b ? $a : $b }, @VALUES)

We saw how to make this change back in Section 4.4, when we arranged to have
imap()’s callback invoked with the current iterator value in $_ in addition to
$_[0]; this allowed it to have a more map()-like calling syntax. We can arrange
reduce() similarly:

sub reduce (&@) {

my $code = shift;

my $val = shift;

for (@_) {

local ($a, $b) = ($val, $_);

$val = $code->($val, $_)

}

return $val;

}

Here we’re using the global variables $a and $b to pass the total and the current
list element. Use of global variables normally causes a compile-time failure under
strict 'vars', but there is a special exemption for the variables $a and $b. The
exemption is there to allow usages just like this one, and in particular to support
the analogous feature of Perl’s built-in sort() function. The List::Util version
of reduce() already has this feature built in.

346 Higher-Order Functions and Currying

If we curry the reduce() function, we can use it to manufacture functions
like sum() and max():

BEGIN {

*reduce = curry(\&List::Util::reduce);

*sum = reduce { $a + $b };

*max = reduce { $a > $b ? $a : $b };

}

This version of reduce() isn’t quite as general as it could be. All the functions
manufactured by reduce() have one thing in common: Given an empty list of
arguments, they always return undef. For max() and min() this may be appro-
priate, but for sum() it’s wrong; the sum of an empty list should be taken to be
0. (The sum() function provided by List::Util also has this defect.) This small
defect masks a larger one: When the argument list is nonempty, our version of
reduce() assumes that the total should be initialized to the first data item. This
happens to work for sum() and max(), but it isn’t appropriate for all functions.
reduce can be made much more general if we drop this assumption. As a trivial
example, suppose we want a function to produce the length of a list. This is
almost what we want:

reduce { $a + 1 };

But it only produces the correct length when given a list whose first element
is 1, since otherwise $val is incorrectly initialized. A more general version of
reduce() accepts an explicit parameter to say what value should be returned for
an empty list:

sub reduce (&$@) {

my $code = shift;

my $val = shift;

for (@_) {

local ($a, $b) = ($val, $_);

$val = $code->($val, $_)

}

return $val;

}

A version with optional currying is:

sub reduce (&;$@) {CODE LIBRARY
reduce my $code = shift;

. reduce() combine() 347

my $f = sub {

my $base_val = shift;

my $g = sub {

my $val = $base_val;

for (@_) {

local ($a, $b) = ($val, $_);

$val = $code->($val, $_);

}

return $val;

};

@_ ? $g->(@_) : $g;

};

@_ ? $f->(@_) : $f;

}

The list-length function is now:

*listlength = reduce { $a + 1 } 0;

where the 0 here is the correct result for an empty list. Similarly,

*product = reduce { $a * $b } 1;

is a function that multiplies all the elements in a list of numbers. We can even
use reduce() to compute both at the same time:

length_and_product = reduce { [$a->[0]+1, $a->[1]$b] } [0, 1];

This makes only one pass over the list to compute both the length and the
product. For an empty list, the result is [0, 1], and for a list with one element
x, the result is [1, x]. List::Util::reduce() can manufacture only functions
that return undef for the empty list, and that return the first list element for a
single-element list. The length_and_product() function can’t be generated by
List::Util::reduce() because it doesn’t have these properties.

A properly general version of reduce() gets an additional argument that says
that the function should return when given an empty list as its argument. In
the programming literature, the properly general version of reduce() is more
typically called fold():

sub fold {

my $f = shift;

348 Higher-Order Functions and Currying

my $fold;

$fold = sub {

my $x = shift;

sub {

return $x unless @_;

my $first = shift;

$fold->($f->($x, $first), @_)

}

}

}

Eliminating the recursion yields:

sub fold {CODE LIBRARY
fold my $f = shift;

sub {

my $x = shift;

sub {

my $r = $x;

while (@_) {

$r = $f->($r, shift());

}

return $r;

}

}

}

7.3.1 Boolean Operators

In Section 4.3 we saw a system that would search backwards through a log file
looking for records that matched a simple query. To extend this into a use-
ful database system, we need to be able to combine simple queries into more
complex ones.

Let’s suppose that $a and $b are iterators that will produce data items that
match queries A and B, respectively. How can we manufacture an iterator that
matches the query A || B?

One way we could do this is to interleave the elements of $a and $b:

sub interleave {CODE LIBRARY
interleave my ($a, $b) = @_;

. reduce() combine() 349

return sub {

my $next = $a->();

unless (defined $next) {

$a = $b;

$next = $a->();

}

($a, $b) = ($b, $a);

$next;

}

}

But this has the drawback that if the record sets produced by $a and $b happen
to overlap, the interleaved outputs will include some records more than once.

We can do better if we suppose that the records will be produced in some
sort of canonical order. This assumption isn’t unreasonable. Typically, a database
will have a natural order dictated by the physical layout of the information on
the disk and will always produce records in this natural order, at least until the
data is modified. For example, our program for searching the web log file always
produces matching records in the order they appear in the file. Even DBM files,
which don’t appear to keep records in any particular order, have a natural order;
this is the order in which the records will be generated by the each() function.

Supposing that $a and $b will produce records in the same order, we can
perform an “or” operation as follows:

package Iterator_Logic; CODE LIBRARY
Iterator_Logic.pmuse base 'Exporter';

@EXPORT = qw(i_or_ i_or i_and_ i_and i_without_ i_without);

sub i_or_ {

my ($cmp, $a, $b) = @_;

my ($av, $bv) = ($a->(), $b->());

return sub {

my $rv;

if (! defined $av && ! defined $bv) { return }

elsif (! defined $av) { $rv = $bv; $bv = $b->() }

elsif (! defined $bv) { $rv = $av; $av = $a->() }

else {

my $d = $cmp->($av, $bv);

if ($d < 0) { $rv = $av; $av = $a->() }

elsif ($d > 0) { $rv = $bv; $bv = $b->() }

else { $rv = $av; $av = $a->(); $bv = $b->() }

}

350 Higher-Order Functions and Currying

return $rv;

}

}

use Curry;

BEGIN { *i_or = curry(\&i_or_) }

i_or_() gets a comparator function, $cmp, which defines the canonical order,
and two iterators, $a and $b. It returns a new iterator that returns the next record
from either $a or $b in the canonical order. If $a and $b both produce the same
record, the duplicate is discarded. It begins by kicking $a and $b to obtain the
next record from each. If either is exhausted, it returns the record from the other;
if both are exhausted, it returns undef to indicate that there are no more records.
$rv holds the record that is to be the return value.

If both input iterators produce records, the new iterator compares the records
to see which should come out first. If the comparator returns zero, it means the
two records are the same, and only one of them should be emitted. $rv is assigned
one of the two records, as appropriate, and then one or both of the iterators is
kicked to produce new records for the next call.

The logic is very similar to the merge() function of Section 6.4. In fact,
merge() is the stream analog of the “or” operator.

i_or() is a curried version of i_or_(), called like this:

BEGIN { *numeric_or = i_or { $_[0] <=> $_[1] };

*alphabetic_or = i_or { $_[0] cmp $_[1] };

}

$event_times = numeric_or($access_request_times,

numeric_or($report_request_times,

$server_start_times));

“And” is similar:

sub i_and_ {

my ($cmp, $a, $b) = @_;

my ($av, $bv) = ($a->(), $b->());

return sub {

my $d;

until (! defined $av || ! defined $bv ||

($d = $cmp->($av, $bv)) == 0) {

if ($d < 0) { $av = $a->() }

else { $bv = $b->() }

}

. 351

return unless defined $av && defined $bv;

my $rv = $av;

($av, $bv) = ($a->(), $b->());

return $rv;

}

}

BEGIN { *i_and = curry \&i_and_ }

7.4

In Section 4.3 we saw the beginnings of a database system that would manufacture
an iterator containing the results of a simple query. To open the database we did:

my $dbh = FlatDB->new($datafile);

and then to perform a query,

$dbh->query($fieldname, $value);

or:

$dbh->callbackquery(sub { ... });

which selects the records for which the subroutine returns true.
Let’s extend this system to handle compound queries. Eventually, we’ll want

the system to support calls like this:

$dbh->select("STATE = 'NY' |

OWES > 100 & STATE = 'MA'");

This will require parsing of the query string, which we’ll see in detail in Chapter 8.
In the meantime, we’ll build the internals that are required to support such
queries.

The internals for simple queries like "STATE = 'NY'" are already done, since
that’s exactly what the $dbh->query('STATE', 'NY') does. We can assume that
other simple queries are covered by similar simple functions, or perhaps by calls
to callbackquery(). What we need now are ways to combine simple queries into
compound queries.

The i_and() and i_or() functions we saw earlier will do what we want, if we
modify them suitably. The main thing we need to arrange is to define a canonical

352 Higher-Order Functions and Currying

order for records produced by one of the simple query iterators. In particular, we
need some way for the i_and() and i_or() operators to recognize that their two
argument iterators have generated the same output record.

The natural way to do this is to tag each record with a unique ID num-
ber as it comes out of the query. Two different records will have different ID
numbers. For flat-file databases, there’s a natural record ID number already to
hand: the record number of the record in the file. We’ll need to adjust the
query() function so that the iterators it returns will generate record numbers.
When we last saw the query() function, it returned each record as a single
string; this is a good opportunity to have it return a more structured piece
of data:

package FlatDB_Compose;CODE LIBRARY
FlatDB_Compose.pm use base 'FlatDB';

use base 'Exporter';

@EXPORT_OK = qw(query_or query_and query_not query_without);

use Iterator_Logic;

usage: $dbh->query(fieldname, value)

returns all records for which (fieldname) matches (value)

sub query {

my $self = shift;

my ($field, $value) = @_;

my $fieldnum = $self->{FIELDNUM}{uc $field};

return unless defined $fieldnum;

my $fh = $self->{FH};

seek $fh, 0, 0;

<$fh>; # discard header line

my $position = tell $fh;

my $recno = 0;

return sub {

local $_;

seek $fh, $position, 0;

while (<$fh>) {

chomp;

$recno++;

$position = tell $fh;

my @fields = split $self->{FIELDSEP};

my $fieldval = $fields[$fieldnum];

return [$recno, @fields] if $fieldval eq $value;

. 353

}

return;

};

}

It might be tempting to try to use Perl’s built-in $. variable here instead of having
each iterator carry its own synthetic $recno, but that’s a bad idea. We took some
pains to make sure that a single database filehandle could be shared among more
than one query. However, the information for $. is stored inside the filehandle;
since we don’t want the current record number to be shared among queries, we
need to store it in the query object (which is private) rather than in the filehandle
(which isn’t). An alternative to maintaining a special $recno variable would be to
use $position as a record identifier, since it’s already lying around, and since it has
the necessary properties of being different for different records and of increasing
as the query proceeds through the file.

Now we need to manufacture versions of i_and() and i_or() that use the
record ID numbers when deciding what to pass along. Because these functions
are curried, we don’t need to rewrite any code to do this:

BEGIN { *query_or = i_or(sub { $_[0][0] <=> $_[1][0] });

*query_and = i_and(sub { $_[0][0] <=> $_[1][0] });

}

BEGIN { *query_without = i_without(sub { $_[0][0] <=> $_[1][0] }); }

The comparator function says that arguments $_[0] and $_[1] will be arrays of
record data, and that we should compare the first element of each, which is the
record number, to decide which data should come out first and to decide record
identity.

Here’s a similarly modified version of callbackquery():

sub callbackquery {

my $self = shift;

my $is_interesting = shift;

my $fh = $self->{FH};

seek $fh, 0, SEEK_SET;

<$fh>; # discard header line

my $position = tell $fh;

my $recno = 0;

return sub {

local $_;

354 Higher-Order Functions and Currying

seek $fh, $position, SEEK_SET;

while (<$fh>) {

$position = tell $fh;

chomp;

$recno++;

my %F;

my @fieldnames = @{$self->{FIELDS}};

my @fields = split $self->{FIELDSEP};

for (0 .. $#fieldnames) {

$F{$fieldnames[$_]} = $fields[$_];

}

return [$recno, @fields] if $is_interesting->(%F);

}

return;

};

}

1;

In Chapter 8, we’ll build a parser that, given this query:

"STATE = 'NY' | OWES > 100 & STATE = 'MA'"

makes this call:

query_or($dbh->query('STATE', 'NY'),

query_and($dbh->callbackquery(sub { my %F = @_; $F{OWES} > 100 }),

$dbh->query('STATE', 'MA')

))

and returns the resulting iterator. In the meantime, we can manufacture the
iterator manually.

The one important logical connective that’s still missing is “not,” which
is a little bit peculiar, logically, because its meaning is tied to the original
database. If $q is a query for all the people in a database who are male, then
query_not($q) should produce all the people from the database who are female.
But the query_not function can’t do that without visiting the original database
to find the female persons. Unlike the outputs of query_and() and query_or(),
the output of query_not() is not a selection of the inputs.

One way around this is for each query to capture a reference back to
the original database that it’s a query on. An alternative is to specify the
database explicitly, as $dbh->query_not($q). Then we can implement a more

. 355

general operator on queries, the so-called set difference operator, also known as
without :

$a but not $b

sub i_without_ {

my ($cmp, $a, $b) = @_;

my ($av, $bv) = ($a->(), $b->());

return sub {

while (defined $av) {

my $d;

while (defined $bv && ($d = $cmp->($av, $bv)) > 0) {

$bv = $b->();

}

if (! defined $bv || $d < 0) {

my $rv = $av; $av = $a->(); return $rv;

} else {

$bv = $b->();

$av = $a->();

}

}

return;

}

}

BEGIN {

*i_without = curry \&i_without_;

*query_without =

i_without(sub { my ($a,$b) = @_; $a->[0] <=> $b->[0] });

}

1;

If $a and $b are iterators on the same database, query_without($a, $b) is an
iterator that produces every record that appears in $a but not in $b. This is useful
on its own, and it also gives us a base for “not”, which becomes something
like this:

sub query_not {

my $self = shift;

my $q = shift;

query_without($self->all, $q);

}

356 Higher-Order Functions and Currying

$self->all is a database method that performs a trivial query that disgorges all
the records in the database. We could implement it specially, or, less efficiently,
we could simply use:

sub all {

$_[0]->callbackquery(sub { 1 });

}

1;

A possibly amusing note is that once we have query_without(), we no longer
need query_and(), since (a and b) is the same as (a without (a without b)).

7.4.1 Operator Overloading

Perl provides a feature called operator overloading that lets us write complicated
query expressions more conveniently. Operator overloading allows us to redefine
Perl’s built-in operator symbols to have whatever meaning we like when they
are applied to our objects. Enabling the feature is simple. First we make a small
change to methods such as query() so that they return iterators that are blessed
into package FlatDB:

package FlatDB_Ovl;CODE LIBRARY
FlatDB_Ovl.pm BEGIN {

for my $f (qw(and or without)) {

*{"query_$f"} = \&{"FlatDB_Compose::query_$f"};

}

}

use base 'FlatDB_Compose';

sub query {

$self = shift;

my $q = $self->SUPER::query(@_);

bless $q => __PACKAGE__;

}

sub callbackquery {

$self = shift;

my $q = $self->SUPER::callbackquery(@_);

bless $q => __PACKAGE__;

}

1;

. 357

Then we add:

use overload '|' => \&query_or,

'&' => \&query_and,

'-' => \&query_without,

'fallback' => 1;

at the top of FlatDB.pm. From then on, any time a FlatDB object participates in
an | or & operation, the specified function will be invoked instead.

Now, given the following simple queries:

my ($ny, $debtor, $ma) =

($dbh->query('STATE', 'NY'),

$dbh->callbackquery(sub { my %F = @_; $F{OWES} > 100 }),

$dbh->query('STATE', 'MA')

);

we’ll be able to replace this:

my $interesting = query_or($ny, query_and($debtor, $ma))

with this:

my $interesting = $ny | $debtor & $ma;

The operators are still Perl’s built-in operators, and so they obey the usual
precedence and associativity rules. In particular, & has higher precedence than |.

