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Parsing is the process of converting an unstructured input, such as a text file, into
a data structure. Almost every program that reads input must perform parsing of
some type. Long ago when I started writing this book, I was amazed to discover
how underappreciated parsing processes are. One editor even worried that parsing
might not be a useful application of Perl. But parsing is nearly universal, because
almost every program must read an unstructured input, such as a text file, and
turn it into a data structure, so that it can do some processing on it.

Programmers have become adept at designing data formats so that parsing is
as simple as possible, and they may be unaware that they are doing it. But even
Perl’s <HANDLE> operator is a rudimentary parser, transforming a character stream
into a record stream. For more complicated sorts of inputs, many programmers
fall back on a lot of weird hackery. But writing parsers can be straightforward and
elegant, even for complex inputs, once you have the right set of tools available.

8.1 

Although it isn’t absolutely required, parsing is almost always split into two
smaller tasks. Consider the process of parsing an English sentence, such as “The
bear devoured Joe’s tent.” Before we can consider the way the words go together,
we have to recognize the words. At the beginning, all we have is a sequence
of characters. We analyze the characters, observing that there are five words,
and also a punctuation character, the period. We should probably consider the
apostrophe to be part of the word Joe’s, although an alternative is to consider
Joe’s to be a combination of the “words” Joe and ’s. We’ll probably throw away
the whitespace, since that doesn’t contribute to the meaning of the sentence
except that it allows us to distinguish word boundaries.

A token is the smallest part of an input that has a definite meaning. In our
English example, the characters devoured have a meaning, but dev and oured
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don’t. devoured is therefore a token; dev and oured aren’t. (We could also argue
that devoured can be further split, into devour and ed. But there’s clearly a limit
to how far the meaning can be divided; d and e have no meaning by themselves.)

Computer parsing processes are similar. Given an utterance such as
my $terminator = @_ ? shift:$/;, the first thing we usually do is assemble
up the unstructured characters of the input into meaningful tokens. Here, the
tokens are my, $terminator, =, @_, ?, shift, :, $/, and ;. Alternatively, we could
divide some of the tokens a little further; Perl’s parser divides $terminator into $

and terminator, and @_ into @ and _, for example. But again, there’s a limit to how
far we can divide things up without destroying the meaning. When analyzing
the meaning of this statement, one simply doesn’t consider the meaning of min.

This process of dividing the characters into tokens goes by several names:
tokenization, lexical analysis or lexing, and scanning. All these words mean the
same thing. The programs that do it are called tokenizers, lexical analyzers, lexers,
or scanners.

One natural way to represent the lexing process is as an iterator of some type.
The lexer can generate a sequence of tokens, potentially infinite, to be consumed
by some later part of the parsing process.

8.1.1 Emulating the <> Operator

As a very simple example of a lexer, we’ll build an iterator that takes a sequence
of characters and turns it into a sequence of records. Here’s a function that builds
iterators that generate sequences of characters:

package Lexer;CODE LIBRARY
Lexer.pm

use base "Exporter";

@EXPORT_OK = qw(make_charstream blocks records tokens iterator_to_stream

make_lexer allinput);

%EXPORT_TAGS = ('all' => \@EXPORT_OK);

sub make_charstream {

my $fh = shift;

return sub { return getc($fh) };

}

# For example:

my $stdin = make_charstream(\*STDIN);
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If $chars is an iterator that generates a sequence of characters, then
records($chars) turns it into an iterator that generates a sequence of records:

sub records { CODE LIBRARY
recordsmy $chars = shift;

my $terminator = @_ ? shift : $/;

my $buffer = "";

sub {

my $char;

while (substr($buffer, -(length $terminator)) ne $terminator

&& defined($char = $chars->())

) {

$buffer .= $char;

}

if ($buffer ne "") {

my $line = $buffer;

$buffer = "";

return $line;

} else {

return;

}

}

}

In addition to the character generator, records() also gets an optional argument,
a line-terminator string; if not supplied, it defaults to the current value of $/,
which is the variable that controls the analogous behavior of the <...> operator.
The iterator keeps a buffer with the characters seen so far but not returned, and
appends each new character to the buffer as it appears. When the buffer is seen
to end with the terminator string, it’s emptied and the contents are returned to
the caller.

With this formulation, we’re in a position to do things that Perl doesn’t have
built-in already. For example, people often ask for the ability to set $/ to a regex
instead of to a plain string. This doesn’t work; the “regex” is interpreted as a plain
string anyway. The reason that Perl doesn’t have this feature is that it’s surprisingly
tricky to implement. It looks easy. For example, we might try implementing it
by changing records() as follows:

sub records {

my $chars = shift;

my $terminator = @_ ? shift : quotemeta($/);
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my $pattern = qr<(?:$terminator)$>;

my $buffer = "";

sub {

my $char;

while ($buffer !˜ /$pattern/

&& defined($char = $chars->())

) {

$buffer .= $char;

}

if ($buffer ne "") {

my $line = $buffer;

$buffer = "";

return $line;

} else {

return;

}

}

}

If we’re expecting inputs with sections that might be terminated either with
" ---\n" or with "+++\n", but we don’t know which, we can say:

my $records = records($chars, qr/-{3}\n|\+{3}\n/);

Inside of records(), the terminator pattern is wrapped up into qr/-{3}\n|

\+{3}\n/, which looks for the terminator pattern only at the end of the buffer.
There are two problems with this implementation. One problem is that it’s

not very efficient. Reading an input one character at a time into a buffer may be a
good way to perform lexical analysis in C, but in Perl, it’s slow. The more serious
problem is that this implementation mishandles a number of regexes that come
up in practice. The simplest example is the regex /\n\n+/, which says that each
record is terminated by one or more following blank lines. Given this input:

a

b

(that is, “a\n\n\nb\n”) there should be two records: “a\n\n\n” and “b\n”. But this
iterator gets a different answer; it produces “a\n\n” and “\nb\n”. The problem
here is that the terminator regex could be considered ambiguous. It says that a
record is terminated by two or more newline characters. The iterator has decided
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that the first record is terminated by exactly two newline characters, and that
the third newline character is part of the second record. While this is arguably
“correct”, it probably isn’t what was wanted. The problem occurs because the
input is being read character-by-character; when the buffer contains “a\n\n”, the
terminator pattern succeeds, and the record is split, even though more reading
would have generated a longer match.

The same bug causes a more serious problem in a different example. Suppose
we’re reading an email header and we’d like the iterator to generate logical fields
instead of physical lines. Suppose the email header is as follows:

Delivered-To: mjd-filter-deliver2@plover.com

Received: from localhost [127.0.0.1] by plover.com

with SpamAssassin (2.55 1.174.2.19-2003-05-19-exp);

Mon, 11 Aug 2003 16:22:12 -0400

From: "Doris Bower" <yij447mrx@yahoo.com.hk>

To: webmaster@plover.com

Subject: LoseWeight Now with Pphentermine,Aadipex,Bontriil,PrescribedOnline,shipped

to Your Door fltynzlfoybv kie

There are five fields here; the second one, with the Received tag, consists of three
physical lines. Lines that begin with whitespace are continuations of the previous
line. So if the records we want are email header fields, the terminator pattern is
/\n(?!\s)/. That is, it’s a newline that is not followed by a whitespace.

Note that /\n[ˆ\s]/ is not correct here, as this says that the following non-
whitespace is actually part of the terminator, which it isn’t. This would treat the
F of From as the final character of the terminator of the Received field; the next
field would then begin rom: "Doris. In contrast, the assertion (?!\s) behaves like
part of the preceding \n symbol, constraining it to match only certain newline
characters instead of all newline characters.

Plugging /\n(?!\s)/ into records() doesn’t work, however. The Received

field is broken into three separate records anyway. What went wrong? Suppose the
first Received line has been read in completely, including the newline character
at the end. The iterator checks to see if the buffer matches /(?:\n(?!\s))$/—
and it does match, because the buffer does end with a newline character, and the
newline character is not followed by whitespace. So the iterator cuts off the line
prematurely, without waiting to discover that this wasn’t actually an appropriate
newline.

We might try to fix this by changing the pattern to /\n(?=\S)/, which
says that the fields are terminated by newline characters that are followed by
non-whitespace. This does indeed prevent the Received field from being split pre-
maturely, because when the first newline comes along, the pattern says that it must
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be followed by non-whitespace, and it isn’t followed by anything. But the pattern
also prevents the field from being split in the correct place, and in fact the entire
input comes out as one big field. This is because by the time the non-whitespace
comes along, the pattern can no longer match at the end of the string, because
it requires that the string end with a newline! So we need another approach.

Unfortunately, there doesn’t seem to be any good way to solve this problem
with the features currently in Perl.

The essential problem is that a pattern match can fail and backtrack for
two essentially different reasons. Consider a pattern like /(abcd)+/, and the two
target strings "abcde" and "abcda". The regex matches the "abcd" part of both
strings, but in different ways. When it matches the string "abcde", it stops at the
e because it sees the e and knows the match can’t possibly continue. But when
it matches the string "abcda" the match stops because the engine runs out of
characters after the second "a", and backtracks to the "d".

For most applications, this distinction doesn’t matter. But in this application,
the second situation is quite different, because when the engine runs off the end
of the string, we want it to try to read some more data, append it to the end of
the target string, and continue. If the engine would tell us whether it reached the
end of the string during the matching process, we could write code that would
extend the target string and try the match again, but at present that feature is not
available, and Perl doesn’t give us any good way to distinguish the two situations.

The best we can do at present is to read the entire input into memory
at once:

sub records {

my $input = shift;

my $terminator = @_ ? shift : quotemeta($/);

my @records;

my @newrecs = split /($terminator)/, $input;

while (@newrecs > 2) {

push @records, shift(@newrecs).shift(@newrecs);

}

push @records, @newrecs;

return sub {

return shift @records;

}

}

There are a few complications here. We enclose the terminator in parentheses,
to prevent split from discarding it. The shift(@newrecs).shift(@newrecs)

expression reassembles a record with its terminator. The function does this only
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when it is sure it has seen the beginning of the next record on the input, because
it doesn’t want to jump the gun and return an incomplete record or a record
with an incomplete terminator; hence @newrecs > 2 instead of @newrecs >= 2.
When the input is exhausted, the input buffer contains the (possibly incomplete)
final record, which is put onto the agenda.

8.1.2 Lexers More Generally

To write a lexer in a language like C, one typically writes a loop that reads the input,
one character at a time, and which runs a state machine, returning a complete
token to the caller when the state machine definition says to. Alternatively, we
could use a program like lex, whose input is a definition of the tokens we want
to recognize, and whose output is a state machine program in C.

In Perl, explicit character-by-character analysis of input is slow. But Perl has
a special feature whose sole purpose is to analyze a string character-by-character
and to run a specified state machine on it; the character loop is done internally in
compiled C, so it’s fast. This feature is regex matching. To match a string against
a regex, Perl examines the string one character at a time and runs a state machine
as it goes. The structure of the state machine is determined by the regex.

This suggests that regexes can act like lexers, and in fact Perl’s regexes have
been extended with a few features put in expressly to make them more effective
for lexing.

As an example, let’s consider a calculator program. The program will accept
an input in the following form:

a = 12345679 * 6

b=a*9; c=0

print b

This will perform the indicated computations and print the result, 666666666.
The first stage of processing this input is to tokenize it. Tokens are integer numer-
als; variable names, which have the form /ˆ[a-zA-Z_]\w*$/; parentheses; the
operators +, -, *, /, **, and =; and the special directive print. Also, newlines
are significant, since they terminate expressions, while other whitespace is unim-
portant except insofar as it separates tokens that might otherwise be considered
a single token. (For example, printb is a variable name, as opposed to print b,
which isn’t.)

The classic style for Perl lexers looks like this:

sub tokens { CODE LIBRARY
tokens-calcmy $target = shift;
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return sub {

TOKEN: {

return ['INTEGER', $1] if $target =˜ /\G (\d+) /gcx;

return ['PRINT'] if $target =˜ /\G print \b /gcx;

return ['IDENTIFIER', $1] if $target =˜ /\G ([A-Za-z_]\w*) /gcx;

return ['OPERATOR', $1] if $target =˜ /\G (\*\*) /gcx;

return ['OPERATOR', $1] if $target =˜ /\G ([-+*\/=()]) /gcx;

return ['TERMINATOR', $1] if $target =˜ /\G (; \n* | \n+) /gcx;

redo TOKEN if $target =˜ /\G \s+ /gcx;

return ['UNKNOWN', $1] if $target =˜ /\G (.) /gcx;

return;

}

};

}

There are a few obscure features here. Every Perl scalar may have associated with it
a “current matching position,” initially the leftmost end of the string. Whenever
a scalar is matched against an expression with the /g flag, its current matching
position is set to the position at which the regex left off matching. Moreover,
if a scalar has a current matching position, then when it’s matched against a
pattern with /g, the search starts at the current matching position instead of at
the leftmost end of the string, effectively ignoring everything to the left of the
current matching position.

The current matching position of a scalar can be examined or set with the
pos() built-in function. For example:

my $target = "123..45.6789...0";CODE LIBRARY
regex-g-demo while ($target =˜ /(\d+)/g) {

print "Saw '$1' ending at position ", pos($target), "\n";

}

The output is:

Saw '123' ending at position 3

Saw '45' ending at position 7

Saw '6789' ending at position 12

Saw '0' ending at position 16

In this example, the matching was able to skip past the dots in the string, just
as "carrot" =˜ /r\w+/ is able to skip past the c and the a. The \G metacharacter
anchors each match to occur only at the position that the previous match left off;
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it’s no longer allowed to skip characters at that position. This is what we want for
our lexer, because we don’t want the lexer to skip forward in the string looking
for a numeral when there might be some other token that appears earlier; we
want to process the string in strict left-to-right order, skipping nothing.

Our basic strategy is something like this:

if ($target =˜ /\Gtoken1/g) {

# do something with token1

} elsif ($target =˜ /\Gtoken2/g) {

# do something with token2

} elsif ...

The idea is that we’ll search at the current position for something that looks
like token1; if we don’t find it, we’ll look at that position for token2, and so on.
Unfortunately, /g has a misfeature that prevents this from working: if the pattern
match fails in a /g match, the current matching position is destroyed! By the
time control reaches the elsif branch, the scalar has forgotten where the search
is intended to occur.

We could work around this by using pos to save and restore the current
matching position before and after every match, but Perl has another special
feature that was introduced just so that we wouldn’t have to do that: If the match
operator has the /c flag as well as the /g flag, the misfeature is disabled. An
unsuccessful match against a /gc pattern leaves the current matching position
unchanged, instead of resetting it.

The iterator returned by tokens() uses this strategy. It captures the target
string, and then, each time it’s called, looks for some sort of token at the current
matching position. If it finds one, it returns a value that represents the token; if
not, it tries looking for a different kind of token.

The only exceptions to this rule are in the last three lines of the function.
If the text at the current position is whitespace (but not newlines, which would
have been taken care of by the TERMINATOR line) the function skips the whitespace
and tries again. The following line (UNKNOWN) is a catchall for handling unrecog-
nized characters. Alternatively, we might have written the function to throw an
exception. Finally, the last line handles the case where the current position is at
the very end of the string; as usual, it returns a false value to the caller to indicate
that it has no more output.

On our sample input:

a = 12345679 * 6

b=a*9; c=0

print b
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The output is:

[IDENTIFIER, "a"]

[OPERATOR, "="]

[INTEGER, "12345679"]

[OPERATOR, "*"]

[INTEGER, "6"]

[TERMINATOR, "\n"]

[IDENTIFIER, "b"]

[OPERATOR, "="]

[IDENTIFIER, "a"]

[OPERATOR, "*"]

[INTEGER, "9"]

[TERMINATOR, ";"]

[IDENTIFIER, "c"]

[OPERATOR, "="]

[INTEGER, "0"]

[TERMINATOR, "\n"]

[PRINT]

[IDENTIFIER, "b"]

[TERMINATOR, "\n"]

8.1.3 Chained Lexers

The lexer of the previous section is easy to read and to write, and it’s efficient.
It has one major drawback, however: the target string must be stored entirely
in memory. As we saw, it’s quite tricky to use regexes to tokenize an input that
hasn’t been completely read yet; we might have read some string that ends with
print, and tokenized the print as a print operator, only to read another block
and discover that it was actually the first five letters of an identifier printmaking.
The lexer might similarly misparse ** as * *.

A modified version of the iterator of Section 8.1.1 solves this problem. It gets
three arguments. The first is an input iterator, as before. The input iterator will
generate strings of input, perhaps a block at a time, or perhaps less or more. The
second argument is a label, such as IDENTIFIER or OPERATOR, to include in the
output tokens. The third argument is a regex that matches the tokens we want to
find. The iterator’s output will be a sequence of tokens and strings. When it sees
something it recognizes, it converts it into a token, which is a value of the form:

[$label, $string]
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and when it sees something it doesn’t recognize, it returns it unchanged, as a
plain string. So, for example, the lexer produced by tokens($input, "NUMERAL",

qr/\d+/), if given the same preceding sample input, will generate the following
items:

"a = "

["NUMERAL", 12345679]

" * "

["NUMERAL", 6]

"\nb=a*"

["NUMERAL", 9]

"; c="

["NUMERAL", 0]

"\nprint b\n"

Once we have this, what do we do with it? We feed it as input to another lexer
iterator, one which passes the NUMERAL tokens through unmodified, but examines
the string portions for tokens that match its own regex. If we filter the input with
a series of these iterators, we’ll get an output stream that will contain the tokens
we want, and also some plain strings that represent unrecognized portions of the
input.

The code is complicated by the need to hold onto input while looking ahead
to make sure that something coming up doesn’t change the interpretation of the
input we’ve seen already:

sub tokens { CODE LIBRARY
tokensmy ($input, $label, $pattern) = @_;

my @tokens;

my ($buf, $finished) = ("");

my $split = sub { split /($pattern)/, $_[0] };

my $maketoken = sub { [$label, $_[0] ]};

sub {

while (@tokens == 0 && ! $finished) {

my $i = $input->();

if (ref $i) { # Input is a token

my ($sep, $tok) = $split->($buf);

$tok = $maketoken->($tok) if defined $tok;

push @tokens, grep defined && $_ ne "", $sep, $tok, $i;

$buf = "";

} else { # Input is an untokenized string

$buf .= $i if defined $i; # Append new input to buffer
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my @newtoks = $split->($buf);

while (@newtoks > 2

|| @newtoks && ! defined $i) {

# Buffer contains complete separator plus complete token

# OR we’ve reached the end of the input

push @tokens, shift(@newtoks);

push @tokens, $maketoken->(shift @newtoks) if @newtoks;

}

# Reassemble remaining contents of buffer

$buf = join "", @newtoks;

$finished = 1 if ! defined $i;

@tokens = grep $_ ne "", @tokens;

}

}

return shift(@tokens);

}

}

The output agenda is @tokens. Tokens are put onto it under three circumstances:

1. When the current input contains so much text that it’s clear the function
has seen an entire token, plus at least one character of what follows it, then
the token and any preceding non-token text are placed into @tokens. This
occurs when @newtoks > 2.

2. When the current input is exhausted, a token is extracted from it, if possible,
and then whatever was found is put into @tokens. This occurs when $i, the
most recent input, is undefined.

3. When the most recent input is itself a token, passed up from some lower-
level lexer, we know that the following characters aren’t part of this token, so
we can examine the current text in the same way as if it were at the end of
the input. This occurs when $i, the most recent input, is a token; the test is
if (ref $i).

The input to tokens() is usually another iterator that was built by tokens(). To
get the process started, we could supply an iterator that emits a string containing
the data that is to be tokenized:

sub allinput {

my $fh = shift;

my @data;

{ local $/;
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$data[0] = <$fh>;

}

sub { return shift @data }

}

We can avoid the need to read the entire input into memory all at once, and use
a base iterator that returns one block of data at a time from a filehandle:

sub blocks {

my $fh = shift;

my $blocksize = shift || 8192;

sub {

return unless read $fh, my($block), $blocksize;

return $block;

}

}

But if we use this, then we must be extremely careful that we don’t exercise the
problem we saw back in Section 8.1.1, in which a lexer might return a short
token when it could have returned a longer one.

We can generalize tokens() a little bit. The code that manufactures the
token value, $maketoken, is an anonymous function. We might as well let the
user specify the function that performs this task, making it into a callback. Then
$label, which isn’t used anywhere else, merely becomes a user argument to this
callback:

sub tokens {

my ($input, $label, $pattern, $maketoken) = @_;

$maketoken ||= sub { [ $_[1], $_[0] ] };

my @tokens;

my $buf = ""; # set to undef to when input is exhausted

my $split = sub { split /($pattern)/, $_[0] };

sub {

while (@tokens == 0 && defined $buf) {

my $i = $input->();

if (ref $i) {

my ($sep, $tok) = $split->($buf);

$tok = $maketoken->($tok, $label) if defined $tok;

push @tokens, grep defined && $_ ne "", $sep, $tok, $i;

$buf = "";

last;
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}

$buf .= $i if defined $i;

my @newtoks = $split->($buf);

while (@newtoks > 2

|| @newtoks && ! defined $i) {

push @tokens, shift(@newtoks);

push @tokens, $maketoken->(shift(@newtoks), $label)

if @newtoks;

}

$buf = join "", @newtoks;

undef $buf if ! defined $i;

@tokens = grep $_ ne "", @tokens;

}

return shift(@tokens);

}

}

We can call this version of tokens just as before, but now it’s more flexible. For-
merly, we could have written a whitespace recognizer that generated whitespace
tokens:

tokens($input, "WHITESPACE", qr/\s+/)

but we would have had to discard these tokens later on, perhaps with igrep, since
we weren’t really interested in them. With the new formulation, we can write:

tokens($input, "WHITESPACE", qr/\s+/, sub { "" });

which represents a whitespace token as an empty string; the empty strings are
removed from the output by the iterator itself, so the whitespace just disappears.
(If this seems like too much of a trick, it’s simple to change the code so that
the $maketoken argument is expected to return a list of tokens to be inserted
into the output, and then have the WHITESPACE maketoken() function return an
empty list.)

Similarly, instead of a generic OPERATOR token, it might be convenient to
include the operator type and its precedence in the token:

%optype = ('+' => ['ARITHMETIC', 3],

'-' => ['ARITHMETIC', 3],
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'*' => ['ARITHMETIC', 4],

'/' => ['ARITHMETIC', 4],

'**' => ['ARITHMETIC', 5],

'x' => ['STRING' , 4],

'.' => ['STRING' , 3],

...

);

tokens($input, \%optype, qr/\*\*|[-+*\/x.]|.../,

sub { my $optype = $_[1];

[ "OPERATOR", @{$optype->{$_[0]}}, $_[0] ]

});

The tokens that come out of this iterator look like ["OPERATOR", "ARITHMETIC",

5, "**"].
Lexers are easy to write with the chained-lexer technique, but the resulting

code is ugly:

my $lexer = tokens(

tokens(

tokens(

tokens(

tokens(

tokens($input,

'TERMINATOR',

qr/;\n*|\n+/,

),

'INTEGER',

qr/\b\d+\b/,

),

'PRINT',

qr/\bprint\b/,

),

'IDENTIFIER',

qr|[A-Za-z_]\w*|,

),

'OPERATOR',

qr#\*\*|[-=+*/()]#,

),

'WHITESPACE',

qr/\s+/,

sub { "" }, # discard

);
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But a spoonful of syntactic sugar makes the medicine go down:

sub make_lexer {

my $lexer = shift;

while (@_) {

my $args = shift;

$lexer = tokens($lexer, @$args);

}

$lexer;

}

Now we can build the lexer with a tidy, tabular piece of code:

my $lexer = make_lexer($input,

['TERMINATOR', qr/;\n*|\n+/ ],

['INTEGER', qr/\b\d+\b/ ],

['PRINT', qr/\bprint\b/ ],

['IDENTIFIER', qr|[A-Za-z_]\w*| ],

['OPERATOR', qr#\*\*|[-=+*/()]# ],

['WHITESPACE', qr/\s+/, sub { "" } ],

);

Calls to make_lexer() can be chained the same way that calls to tokens() were.
We’ll use this lexer later, so let’s observe one feature that you might otherwise

miss: A semicolon (possibly followed by newlines, but possibly alone) is lexed as
a TERMINATOR token, the same as actual newline characters would be.

8.1.4 Peeking

Our lexers need one more feature to be complete. Consider a parser for some
kind of expression that has two distinct forms; say a parser for numerals that
might look either like "123" or like "-123". These will be tokenized as [INTEGER,
"123"] and as [OPERATOR, "-"], [INTEGER, "123"], respectively.

We would like to build the parser to understand both forms, and for reasons
of maintenance and modularity we might like to build it from two separate
parts, one that handles unsigned integers and one that handles negated integers.
A master control will examine the next token in the input. If it’s an INTEGER, the
master control will invoke the sub-parser for unsigned integers; if it’s an OPERATOR

the master control will invoke the sub-parser for negated integers. If the next
token is anything else, the master parser will signal an error.
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The problem is that once the master control has eaten the token at the front
of the input stream, the token is gone; the sub-parsers no longer have access to
it, and the unsigned integer parser certainly needs it, because the token contains
the value of the integer. We could fix this by passing the eaten token to the sub-
parsers explicitly. However, this will entail complications in the parsers, which
will now have to get their inputs from two separate sources.

A simpler approach is to allow the master parser to put the eaten token back
into the input stream, or, alternatively, to allow it to examine the next token in
an input without removing it from the stream. We’ll use the second approach:

sub tokens {

...

sub {

while (@tokens == 0 && ! $finished) {

...

}

return $_[0] eq 'peek' ? $tokens[0] : shift(@tokens);

}

}

Normally, we invoke a lexer as $lexer->(), which consumes and returns the
next token in the input. With this change, we have the option of saying
$lexer->('peek'), which returns the next token in the input without consuming
it; the next call to $lexer->() will return the same token we just peeked at.

An alternative approach is to represent lexers as streams, in the sense of
Chapter 6. Turning our generic function-style iterators into lazy streams is
easy:

use Stream 'node'; CODE LIBRARY
it2stream.pl

sub iterator_to_stream {

my $it = shift;

my $v = $it->();

return unless defined $v;

node($v, sub { iterator_to_stream($it) });

}

1;

If we do this, the “peek” function is just head(), and the “read and discard”
function is drop().



376         Parsing

8.2    

We’ve finished with lexers, which transform unstructured character sequences
into token sequences. Now we’ll deal with parsers, which read sequences of
tokens and integrate them into complex structures. The result of parsing is the
meaning of the input, or the value of the input. For example, the result of parsing
the input 3 + 4 * 5 might be the number 23, which is the meaning or the value
of the expression. If the parser is part of a compiler, the value might be a sequence
of machine language instructions for calculating 3 + 4 · 5.

8.2.1 Grammars

The key to parsing is the grammar, which describes the structure of a legal input.
As a simple example, we’ll consider a parser for a very limited set of arithmetic
expressions, including only addition, multiplication, and parentheses. Here is
the grammar:

expression → atom '+' expression

expression → atom '*' expression

expression → '(' expression ')'

expression → atom

atom → 'INT'

atom → 'VAR'

Items in quotes represent literal tokens; items not in quotes represent other
parts of the grammar. Both kinds of items are called symbols. The first section
is the definition of the expression symbol. It says that there are four alterna-
tive forms for an expression. An expression might be an atom followed by a
+ token followed by a complete expression, or it might be an atom followed
by a * token followed by a complete expression, or it might be a complete
expression enclosed in parentheses, or it might simply be an atom by itself.
What’s an atom? The second section defines the atom symbol: It’s either an INT

token or a VAR token. The four alternatives in the expression definition and the
two alternatives in the atom definition are sometimes called clauses or produc-
tions. One of the symbols is usually considered more important than the others,
and represents the entire structure that we’re trying to parse; the other sym-
bols usually represent various sub-structures or special cases. In this case the
important symbol is expression. This more-important symbol is called the start
symbol.
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The grammar defines all the legal expressions, as follows. Start with the start
symbol, expression. Apply a production by replacing the symbol on the left side
of the production with the symbols on the right; for example, replace expres-
sion with (expression). Repeat until there is nothing left but literal tokens. For
example,

expression

atom * expression # expression clause 2

INT * expression # atom clause 1

INT * ( expression ) # expression clause 3

INT * ( atom + expression ) # expression clause 1

INT * ( atom + atom * expression ) # expression clause 2

INT * ( atom + VAR * expression ) # atom clause 2

INT * ( atom + VAR * atom ) # expression clause 4

INT * ( VAR + VAR * atom ) # atom clause 2

INT * ( VAR + VAR * INT ) # atom clause 1

This derivation shows that the sequence of tokens INT * ( VAR + VAR * INT )

is a valid expression. The valid expressions are exactly those for which derivations
exist. INT INT INT and INT + + VAR are not valid expressions, according to our
grammar, because there are no derivations for them.

Now some jargon: The symbols that appear on the left side of productions,
such as expression and atom, are called nonterminal symbols or just nonterminals,
because a derivation is not complete as long as one of them appears in the result.
Conversely, the literal tokens are called terminal symbols or just terminals because
once they appear, they can’t be replaced. A sequence of symbols is sometimes
called a sentential form; if all the symbols are terminals, the sentential form is a
sentence. So a derivation of a particular sentence consists of a sequence of sentential
forms, each of which is obtained from the previous one by the application of one
of the productions to one of the nonterminal symbols.

One of the primary jobs of parsing is to determine if a particular sequence of
tokens is a sentence according to a given grammar, and, if so, which productions
to apply in which order to produce it. In principle, this is simple. The space
of all possible sentential forms has a tree structure, and we need only do a tree
search on this tree, looking for the sentential form that corresponds to the input
tokens. Figure 8.1 shows the top portion of the tree for the expression symbol in
the example grammar.

The root node is the sentential form that consists only of the start symbol,
expression. At each node, we obtain the child nodes by replacing the leftmost
nonterminal symbol with the right-hand side of one if its productions. When
there are no nonterminal symbols, the node is a leaf. A path from the root to
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 . Part of the search space of all possible expressions.
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a particular leaf gives a derivation of the sentence at that leaf. For example, by
tracing backwards from the INT+INT leaf to the root, we find a derivation of the
sentence INT+INT:

expression

atom '+' expression # expression clause 1

'INT' '+' expression # atom clause 1

'INT' '+' atom # expression clause 4

'INT' '+' 'INT' # atom clause 1

Finding a derivation for a particular sentence, therefore, is equivalent to locating
the sentence in the tree, and therefore to a tree search.

Breadth-first search will eventually find the derivation, if it exists, but, as
is usual with breadth-first search, consumes a lot of memory, and so isn’t used
very often. Depth-first search is cheaper, but since the tree is typically infinite,
depth-first search can go charging down one of the infinite branches, never to
return. To illustrate the potential problem and its solution, here’s a particularly
simple example grammar:

expr → 'A' expr

expr → 'X'

An expr is either an X token or else an A token followed by a complete expr. Expres-
sions (expr) in this grammar therefore consist of some number of A’s followed by
an X. The derivation tree looks like this:

expr AAAAAexpr ...Aexpr

X

AAexpr AAAexpr AAAAexpr

AX

AAX

AAAX

AAAAX

A naive depth-first search will go charging down the topmost branch, looking
for a complete sentence, and never find one. It will never investigate any of the
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other branches. But there’s an obvious way to prune the search. Suppose the
search is looking for AX. The search first examines the Aexpr node. Each node
below this one will begin with A. The target sentence, AX, also begins with A, so
the search continues. The next node is AAexpr. Every node below this one will
begin with AA. The target sentence does not begin with AA, so the search can
ignore this entire branch, moving over to the sibling branch, AX. The search then
succeeds. The tree is infinite, but the search process can trim out large infinite
portions of it.

For an analogous example with a more typical grammar, consider our original
grammar example. Suppose the target sentence is simply VAR.The search proceeds
down the first branch, atom+expression, to the first of its two sub-nodes, which is
INT+expression. Each node below this one must begin with INT +, and the target
sentence does not, so the search can skip all the lower nodes, moving instead to
the VAR+expression branch. Each node below this one begins with VAR +, and the
target sentence does not, so the search again skips all the lower nodes, moving
instead to the atom*expression branch, which fails similarly. The third branch,
(expression), fails even more quickly, since the search knows that all the lower
nodes on that branch will begin with (, and the target sentence does not. Finally,
the search moves to the fourth branch, atom, tries the first sub-node, INT, which
fails, and then the second sub-node, VAR, which is the sentence that was being
sought.

8.2.2 Parsing Grammars

One way to implement a parser is the same way we’ve done tree search in previous
chapters. The search maintains an agenda of sentential forms that need to be
investigated. Initially, the agenda contains only the sentential form consisting
of just the start symbol. At each stage, the search pops a sentential form off the
agenda list. If the sentential form is a sentence, the search succeeds if it is the
correct sentence, and continues otherwise. If the sentential form is not a sentence,
but begins with some terminal symbols, the search checks to make sure that the
target sentence begins with the same terminals. If not, the sentential form is
discarded, pruning the search. When there are no sentential forms remaining in
the agenda, the search fails.

If the sentential form popped from the agenda is not discarded, the search
locates the leftmost nonterminal symbol in the sentential form — let’s say the sen-
tential form is VAR + expression, so the leftmost nonterminal symbol is expression.
The search looks up all the productions whose left side is this nonterminal symbol,
expression. In our example, there are four of these. It adds a new item to the agenda
for each one, obtaining the new item by replacing the nonterminal symbol in the
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left side of the production with the sentential form on the right. In our example,
the search adds the four items VAR + atom + expression, VAR + atom * expression,
VAR + ( expression ), and VAR + atom to the agenda. The process then repeats.

Here’s sample code, using the make_dfs_search() function of Section 5.3.
We will represent a grammar as a hash:

expression => [['INT', '+', 'expression'],

['INT', '*', 'expression'],

['(', 'expression', ')'],

['INT'],

]

Keys are nonterminal symbols; values are arrays of productions. To distinguish a
terminal from a nonterminal symbol, we just look it up in the hash:

require "make-dfs-search"; CODE LIBRARY
DFSParser.pm

sub make_parser_for_grammar {

my ($start, $grammar, $target) = @_;

my $is_nonterminal = sub {

my $symbol = shift;

exists $grammar->{$symbol};

};

When the search finds a sentential form, it scans the form to see if it matches
the target sentence, stopping at the first nonterminal symbol. If the senten-
tial form is too long or too short, or if one of its leading tokens doesn’t
match the corresponding token in the target sentence, then the search won’t
mention it:

my $is_interesting = sub {

my $sentential_form = shift;

for my $i (0 .. $#$sentential_form) {

return 1 if $is_nonterminal->($sentential_form->[$i]);

return if $i > $#$target;

return if $sentential_form->[$i] ne $target->[$i];

}

return @$sentential_form == @$target ;

};
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Given a sentential form, we find the children in the tree by locating the left-
most nonterminal symbol and replacing it with each of its productions from the
grammar.

First we locate the leftmost nonterminal symbol:

my $children = sub {

my $sentential_form = shift;

my $leftmost_nonterminal;

my @children;

for my $i (0 .. $#$sentential_form) {

if ($is_nonterminal->($sentential_form->[$i])) {

$leftmost_nonterminal = $i;

last;

If the sentential form is too long to match the target, we prune the tree at that
point by reporting that it has no children:

} else {

return if $i > $#$target;

Similarly, if the initial tokens of the sentential form don’t match the initial tokens
of the target sentence, we prune:

return if $target->[$i] ne $sentential_form->[$i];

}

}

If a node has no nonterminal symbols, it is a leaf and has no children:

return unless defined $leftmost_nonterminal; # no nonterminal symbols

Having located the leftmost nonterminal symbol, we generate the child nodes
by replacing the nonterminal with each of the possible productions for it:

for my $production (@{$grammar->{$sentential_form->[$leftmost_nonterminal]}}) {

my @child = @$sentential_form;

splice @child, $leftmost_nonterminal, 1, @$production;

push @children, \@child;

}

@children;

};
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The parser itself uses make_dfs_search() (See Section 5.3) to do a DFS search
of the space of sentential forms. The root node is the sentential form containing
only the start symbol:

return sub {

make_dfs_search([$start], $children, $is_interesting);

};

}

1;

To use this, we say something like:

my $parser = make_parser_for_grammar 'expression',

{

expression => [['INT', '+', 'expression'],

['INT', '*', 'expression'],

['(', 'expression', ')'],

['INT'],

],

},

['(', 'INT', '*', '(', 'INT', '+', 'INT', ')', ')']

;

The target sentence here is ( INT * ( INT + INT ) ).

my $parses = $parser->();

while (my $parse = $parses->()) {

print "@$parse\n";

}

The output is:

expression

( expression )

( INT * expression )

( INT * ( expression ) )

( INT * ( INT + expression ) )

( INT * ( INT + INT ) )

which is indeed a derivation of the target sentence.
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If we try parsing a non-sentence, say INT * + INT, we get:

expression

INT * expression

The target sentence never comes out, because the parser got stuck. It wanted to
find a way to make + INT into an expression, but it couldn’t.

8.3  - 

A commonly used technique for parsing by DFS is to move the responsibility
for the search back into the Perl function-call mechanism. A parser becomes a
function that takes an input stream and examines its front for a certain pattern
of tokens and values. If it likes what it sees, it returns two things: the value
or meaning it assigns to the tokens, and the unused portion of the input. If
the function doesn’t like what it sees, it returns false. If a parser represents a
compound expression, it may call sub-parsers to help it decide if the input is
in the proper form; this is where the DFS arises. Parsers that call each other
recursively to parse an input in this way are called recursive-descent parsers.

We’ll develop a module, Parser.pm, with tools for manufacturing recursive-
descent parsers. The module starts off with the usual declarations:

package Parser;CODE LIBRARY
Parser.pm use Stream ':all';

use base Exporter;

@EXPORT_OK = qw(parser nothing End_of_Input lookfor

alternate concatenate star list_of

operator T

error action test);

%EXPORT_TAGS = ('all' => \@EXPORT_OK);

sub parser (&); # Advance declaration - see below

8.3.1 Very Simple Parsers

The simplest parser of all consumes no input and always succeeds, yielding the
value undef:

sub nothing {

my $input = shift;
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return (undef, $input);

}

The next simplest just checks for the end of the input:

sub End_of_Input {

my $input = shift;

defined($input) ? () : (undef, undef);

}

If the input is undefined (that is, empty), then the function returns success: the
value undef, and the remaining unread input, also undef (still empty). Otherwise,
the function returns an empty list to indicate failure.

The next-simplest parsers look for single specific tokens. For example, a
parser that succeeds if the next token is an INT:

sub INT {

my $input = shift;

return unless defined $input;

my $next = head($input);

return unless $next->[0] eq 'INT';

my $token_value = $next->[1];

return ($token_value, tail($input));

}

If the input is empty, it fails immediately. Otherwise, it examines the token at
the head of the input to see if it is an INT token; if not, it fails. But if the next
token is an INT token, the function returns the token’s numeric value (stored in
$token->[1]) and the remaining input. The value returned by this parser is a
number, namely the value one would expect the integer token to represent.

Since we’ll need many of these token-recognizing functions, we’ll build them
with a function factory:

sub lookfor {

my $wanted = shift;

my $value = shift || sub { $_[0][1] };

my $u = shift;

$wanted = [$wanted] unless ref $wanted;

my $parser = parser {

my $input = shift;
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return unless defined $input;

my $next = head($input);

for my $i (0 .. $#$wanted) {

next unless defined $wanted->[$i];

return unless $wanted->[$i] eq $next->[$i];

}

my $wanted_value = $value->($next, $u);

return ($wanted_value, tail($input));

};

return $parser;

}

To generate a function that looks for an [OP +] token, we can call lookfor(['OP',
'+']). The generated parser will examine all the elements of $wanted, the argu-
ment, and will succeed if all the specified components in $wanted match the
actual components of the next input token in $next. To generate the preceding
INT function, we could call lookfor(['INT']). lookfor('INT') is a shorthand
for lookfor(['INT']).

lookfor() gets an optional second argument, which is a callback function
that turns the token into a value, and an optional third argument, which is a
user parameter to the callback. The default callback extracts the second element
from the token; with the lexers we’ve been using, this is always the literal text of
the token.

The parser() function takes a block of code and builds a parser from it.
Right now, it does nothing:

sub parser (&) { $_[0] }

Later on, it will have some additional behavior.

8.3.2 Parser Operators

Now that we have some simple parsers, how can we put parsers together? The
most obvious thing to do with two parsers is to call them in sequence on the
input. Suppose we have the following grammar:

doorbell → DING DONG

We need a parser that looks for DING, and then if it finds DING it looks for DONG, and
if it finds DONG, it succeeds. This is called the concatenation of the two components.
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If we have a parser function that looks for DING and one that looks for DONG, here’s
a function to concatenate them into a function that looks for doorbell:

sub concatenate {

my ($p1, $p2) = @_;

my $parser = parser {

my $input0 = shift;

my ($v1, $input1) = $p1->($input0) or return;

my ($v2, $input2) = $p2->($input1) or return;

return ([$v1, $v2], $input2);

}

}

The value returned by the concatenation of the two parsers is an array containing
the values returned by the parsers individually. The parser for the doorbell

symbol can be built by saying:

$doorbell = concatenate(lookfor('DING'),

lookfor('DONG'));

If given an input that begins with tokens DING DONG ... , this parser returns the
value ['DING', 'DONG'] and the remaining tokens.

It’s easy to generalize concatenation to more than two parsers:

sub concatenate {

my @p = @_;

return \&nothing if @p == 0;

my $parser = parser {

my $input = shift;

my $v;

my @values;

for (@p) {

($v, $input) = $_->($input) or return;

push @values, $v;

}

return (\@values, $input);

}

}

The other important operation on parsers is alternation, which looks for an input
in one of several alternative forms. For example, alternate(lookfor('DING'),
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lookfor('DONG')) succeeds if the next token in the input is DING or DONG and fails
otherwise. Here’s a two-parser version of alternate():

sub alternate {

my ($p1, $p2) = @_;

my $parser = parser {

my $input = shift;

my ($v, $newinput);

if (($v, $newinput) = $p1->($input)} { return ($v, $newinput) }

if (($v, $newinput) = $p2->($input)} { return ($v, $newinput) }

return;

};

}

The new parser tries running $p1 on the input; if $p1 succeeds, the new parser
just returns whatever $p1 returned, effectively behaving like $p1. If $p1 fails, the
new parser tries $p2 in the same way, behaving like $p2 instead. If they both fail,
then the new parser indicates failure also.

It’s even easier to generalize alternate():

sub alternate {

my @p = @_;

return parser { return () } if @p == 0;

return $p[0] if @p == 1;

my $parser = parser {

my $input = shift;

my ($v, $newinput);

for (@p) {

if (($v, $newinput) = $_->($input)) {

return ($v, $newinput);

}

}

return;

};

}

The only fine point here is that if there are no alternatives at all (@p == 0), then
alternate() returns a parser that never succeeds (parser { return () }).

8.3.3 Compound Operators

Having written functions to build parsers to handle alternatives and concatena-
tions of other parsers, it’s now easy to build more powerful operators for parsers.
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For example, we can build an operator that’s analogous to the regex * operator.
If the parser $P matches a certain kind of input, say DING DONG, then star($P)

will be a parser that matches an empty input, DING DONG, DING DONG DING DONG,
DING DONG DING DONG DING DONG, and so on. The first cut is:

sub star {

my $p = shift;

my $p_star;

$p_star = alternate(concatenate($p, $p_star),

\&nothing);

}

The idea here is to match an input of the form matched by $p, followed by
something else (possibly empty) of the form star($p), or, if we can’t find anything
acceptable to $p, match nothing.

This function doesn’t quite work, because at the time concatenate() is called,
its argument $p_star is still undefined. There are several tricks we can use to work
around this. The simplest is:

sub star {

my $p = shift;

my $p_star;

$p_star = alternate(concatenate($p, parser { $p_star->(@_ ) }),

\&nothing);

}

We’ve replaced $p_star on the right-hand side with a new parser that just calls
$p_star on its arguments and returns the result. Behaviorally, the new parser is
interchangeable with $p_star itself. But the $p_star on the right isn’t evaluated
until the new parser is called, by which time $p_star has the right value. This
trick goes by the peculiar name of eta-conversion.

An alternative formulation would be:

sub star {

my $p = shift;

my $p_star;

$p_star = parser { alternate(concatenate($p, $p_star),

\&nothing)->(@_) };

}
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which works for essentially the same reason. But it will be less efficient than the
previous version, because it will call alternate() and concatenate() each time
it is called.

Using our parser operators, we can build larger operators whenever it’s con-
venient. A common feature of programming languages is lists of various sorts.
For example, Perl has list expressions:

@items = ($expression1, $expression2, $expression3);

and blocks:

$block = sub { $statement1; $statement2; $statement3 };

Here’s a parser operator for parsing lists of elements separated by some kind of
separator sequence:

sub list_of {

my ($element, $separator) = @_;

$separator = lookfor('COMMA') unless defined $separator;

return concatenate($element,

star(concat($separator, $element));

}

1;

Now we can make a parser for lists of expressions:

$expression_list = list_of($expression);

or for lists of statements:

$statement_list = list_of($statement, lookfor('SEMICOLON'));

8.4   

In Section 8.2, we saw a grammar for a simple subset of arithmetic expressions:

expression → atom '+' expression

expression → atom '*' expression
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expression → '(' expression ')'

expression → atom

atom → 'INT'

atom → 'VAR'

Let’s use an even simpler example, which has only numbers, and no variables:

expression → 'INT' '+' expression

expression → 'INT' '*' expression

expression → '(' expression ')'

expression → 'INT'

There’s also an additional rule that represents an entire input:

entire_input → expression 'End_of_Input'

We will build a parser for this example, and later add the other required features,
like subtraction. Transforming the grammar into a parser is simple. We build
one parser function for each nonterminal symbol. We use alternate() when a
symbol has several alternative definitions, and concatenate() when a definition
is the concatenation of more than one token or symbol. When the grammar
mentions that a symbol might contain a token, we call lookfor() to build a
parser that looks for that token; when the grammar mentions that a symbol
might contain an instance of some other nonterminal symbol, we invoke the
parser for that symbol.

To transform the preceding grammar, we first transform the definition of
expression into a parser for expressions:

my $expression;

$expression = alternate(concatenate(lookfor('INT'),

lookfor(['OP', '+']),

$expression),

concatenate(lookfor('INT'),

lookfor(['OP', '*']),

$expression),

concatenate(lookfor(['OP', '(']),

$expression,

lookfor(['OP', ')'])),

lookfor('INT'));

Again, this doesn’t quite work. We can’t use $expression in its own defini-
tion, because until we’ve defined it, it’s undef. The eta-conversion trick works



392         Parsing

just fine here:

use Parser ':all';CODE LIBRARY
expr-parser.pl use Lexer ':all';

my $expression;

my $Expression = parser { $expression->(@_ ) };

$expression = alternate(concatenate(lookfor('INT'),

lookfor(['OP', '+']),

$Expression),

concatenate(lookfor('INT'),

lookfor(['OP', '*']),

$Expression),

concatenate(lookfor(['OP', '(']),

$Expression,

lookfor(['OP', ')'])),

lookfor('INT'));

Defining a parser for entire_input is simple:

my $entire_input = concatenate($Expression, \&End_of_Input);

Suppose the input is the string "2 * 3 + (4 * 5)", and we use the lexer of
Section 8.1.3:

my @input = q[2 * 3 + (4 * 5)];

my $input = sub { return shift @input };

my $lexer = iterator_to_stream(

make_lexer($input,

['TERMINATOR', qr/;\n*|\n+/ ],

['INT', qr/\b\d+\b/ ],

['PRINT', qr/\bprint\b/ ],

['IDENTIFIER', qr|[A-Za-z_]\w*| ],

['OP', qr#\*\*|[-=+*/()]# ],

['WHITESPACE', qr/\s+/, sub { "" } ],

)

);

if (my ($result, $remaining_input) = $entire_input->($lexer)) {

use Data::Dumper;
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print Dumper($result), "\n";

} else {

warn "Parse error.\n";

}

The parser does succeed, returning the following $result:

[

[

'2',

'*',

[

'3',

'+',

[

'(',

[

'4',

'*',

'5'

],

')'

]

]

],

undef

]

Each of the three-element arrays was returned by concatenate(), which returned
an array of the three values that it concatenated. The trailing undef was returned
by the End_of_Input() parser and concatenated into the final result by the
concatenate() in:

my $entire_input = concatenate($Expression, \&End_of_Input);

There are a couple of problems with this result. What we’d most like is to have
the parser generate an abstract syntax tree (AST), as in Section 2.2, where each
node is labeled with an operator, and has child nodes representing the operands
of that operator. We’d like the parser to understand that operators have different
precedences — that 2 * 3 + 4 should be parsed the same as (2 * 3) + 4 but
differently from 2 * (3 + 4). The parentheses shouldn’t appear literally in the
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output; they should affect only the results of the parse. The value we’d like to get
out of the parser for the input "2 * 3 + (4 * 5)" is:

[ '+',

[ '*', 2, 3 ],

[ '*', 4, 5 ]

]

which says that the expression is adding two quantities: the product of 2 and
3, and the product of 4 and 5. Similarly, 2 * 3 + 4 and (2 * 3) + 4 should
produce:

[ '+', ['*', 2, 3], 4 ]

but 2 * (3 + 4) should produce:

[ '*', 2, ['+', 3, 4] ]

We’ll tackle the precedence issue first. There are a few ways to take care of
this, but the quickest one is to make a small change to the grammar. We can
think of an expression like "2 * 3 + (4 * 5)" as a sum of one or more terms,
where each term is a product of one or more factors. If we rewrite the grammar
to express this, the precedence will take care of itself:

entire_input → expression 'End_of_Input'

expression → term '+' expression | term

term → factor '*' term | factor

factor → 'INT' | '(' expression ')'

The notation:

a → b | c

is shorthand for the two rules:

a → b

a → c
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so the grammar says that an expression is either a plain term, or a term plus a
complete expression. A term is either a plain factor, or a factor times a complete
term. Finally, a factor is either an integer token or else a complete expression
enclosed in parentheses.

Translating this grammar into code gives us:

use Parser ':all'; CODE LIBRARY
expr-parser-2.pluse Lexer ':all';

my ($expression, $term, $factor);

my $Expression = parser { $expression->(@_) };

my $Term = parser { $term ->(@_) };

my $Factor = parser { $factor ->(@_) };

$expression = alternate(concatenate($Term,

lookfor(['OP', '+']),

$Expression),

$Term);

$term = alternate(concatenate($Factor,

lookfor(['OP', '*']),

$Term),

$Factor);

$factor = alternate(lookfor('INT'),

concatenate(lookfor(['OP', '(']),

$Expression,

lookfor(['OP', ')']))

);

$entire_input = concatenate($Expression, \&End_of_Input);

The output of the parser on "2 * 3 + (4 * 5)" is now:

[

[

[

'2',

'*',

'3'

],

'+',
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[

'(',

[

'4',

'*',

'5'

],

')'

]

],

undef

]

Not all the problems have been fixed, but the multiplication arguments have
been clustered together, as we wanted; 2 is now associated with 3, and 4 with 5.
Similarly, "2 * 3 + 4" produces:

[

[

[

'2',

'*',

'3'

],

'+',

'4'

],

undef

]

with the 2 and 3 correctly grouped; the previous grammar produced this incorrect
parse instead:

[

[

'2',

'*',

[

'3',

'+',

'4'
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]

],

undef

]

Now we’ll fix the parsers so that they generate proper abstract syntax trees. This
isn’t hard. All the necessary information is available; we just need to arrange it
correctly. In a parser definition like this one:

$term = alternate(concatenate($Factor,

lookfor(['OP', '*']),

$Term),

$Factor);

the concatenate() operator assembles the values returned by its three arguments
in the order they’re listed. But for an abstract syntax tree, we want the operator
first, not second. Similarly, in:

$factor = alternate(lookfor('INT'),

concatenate(lookfor(['OP', '(']),

$Expression,

lookfor(['OP', ')']))

);

the concatenate() operator assembles all three values, but we’re interested only
in the middle one, not the parentheses themselves. The value of a factor of
the form '(' expression ')' should be the same as the value of the inner
expression.

The following function is a little bit like map for parsers generated by
concatenate(). It takes a parser and a transformation function, and returns
a new parser, which recognizes the same inputs, but whose return value is fil-
tered through the transformation function. It is named T, which is short for
“transform”:

sub T {

my ($parser, $transform) = @_;

return parser {

my $input = shift;

if (my ($value, $newinput) = $parser->($input)) {

$value = $transform->(@$value);

return ($value, $newinput);
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} else {

return;

}

};

}

For example, to get $factor to throw away the parentheses and return only the
inner expression, we replace this:

$factor = alternate(lookfor('INT'),

concatenate(lookfor(['OP', '(']),

$Expression,

lookfor(['OP', ')']))

);

with this:

$factor = alternate(lookfor('INT'),

T(

concatenate(lookfor(['OP', '(']),

$Expression,

lookfor(['OP', ')'])),

sub { $_[1] })

);

The three values accumulated by concatenate() are passed to the anonymous
subroutine, which returns only the second one.

Similarly, to get $term to assemble the operator and operands in that order,
we use:

$term = alternate(

T(

concatenate($Factor,

lookfor(['OP', '*']),

$Term),

sub { [ $_[1], $_[0], $_[2] ]}),

$Factor);

For the term 3 * 4 the three arguments to the anonymous subroutine will be
(3, '*', 4) and the return value will be ['*', 3, 4]. We should make a similar
change to the definition of $expression, and we can eliminate the spurious
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trailing undef by changing $entire_input to:

my $entire_input = T(concatenate($Expression, \&End_of_Input),

sub { $_[0] }

);

With these changes, the output of the parser, given the input "2 * 3 + (4 * 5)",
is perfect:

[

'+',

[

'*',

'2',

'3'

],

[

'*',

'4',

'5'

]

]

"2 * 3 + 4" and "(2 * 3) + 4" both come back as:

[

'+',

[

'*',

'2',

'3'

],

'4'

]

but "2 * (3 + 4)", which is different, comes back as:

[

'*',

'2',

[

'+',
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'3',

'4'

]

]

8.4.1 A Calculator

By adjusting the transformation functions, we can turn our parser into a calculator
instead of an abstract-syntax-tree-maker. The value returned by each parser is an
abstract syntax tree for some part of the expression. We need to change the parsers
to return numeric values instead of AST values. Only two changes are necessary:

$expression = alternate(T(concatenate($Term,

lookfor(['OP', '+']),

$Expression),

sub { $_[0] + $_[2] }),

$Term);

$term = alternate(T(concatenate($Factor,

lookfor(['OP', '*']),

$Term),

sub { $_[0] * $_[2] }),

$Factor);

The values returned by the parsers are no longer arrays; now they’re numbers.
When the parser sees an expression like term + expression, instead of building
an abstract-syntax-tree node out of the values of the term and the expression, it
simply adds the values numerically and returns the sum. Similarly, when com-
puting the value of a term, it just does numeric multiplication on the constituents
of the term.

The output for "2 * (3 + 4)" is now just the number 14, and the output
for "2 * 3 + 4" and "(2 * 3) + 4" is 10. The parser returns failure when given
an input with mismatched or unbalanced parentheses, or any other syntactically
incorrect input, such as an input with two consecutive operators or numbers.

8.4.2 Left Recursion

Let’s add subtraction and division to the calculator. This requires only small
changes to the grammar:

entire_input → expression 'End_of_Input'

expression → term '+' expression
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expression → term '-' expression

expression → term

term → factor '*' term

term → factor '/' term

term → factor

factor → 'INT' | '(' expression ')'

In the code, the definition of $expression changes from this:

$expression = alternate(concatenate($Term,

lookfor(['OP', '+']),

$Expression),

$Term);

to this:

$expression = alternate(concatenate($Term,

lookfor(['OP', '+']),

$Expression),

concatenate($Term,

lookfor(['OP', '-']),

$Expression),

$Term);

and $term changes similarly. We can get the calculator to calculate numeric values
by supplying transformation functions like these:

$expression = alternate(T(concatenate($Term,

lookfor(['OP', '+']),

$Expression),

sub { $_[0] + $_[2] }),

T(concatenate($Term,

lookfor(['OP', '-']),

$Expression),

sub { $_[0] - $_[2] }),

$Term);

But now there’s a problem: If we ask for the value of "8 - 4", we get the right
answer. But if we ask for the value of "8 - 4 - 3", we get 7; the correct answer
is 1. What’s gone wrong?

If we return to the AST version of the program, we can see the problem.
"8 - 4 - 3" is parsed as:

[ '-', 8, [ '-', 4, 3 ]]
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which is the same as the parse of "8 - (4 - 3)". But "8 - 4 - 3" is convention-
ally understood to mean "(8 - 4) - 3", which parses as:

[ '-', [ '-', 8, 4], 3 ]

We say that subtraction associates from left to right because, in the absence of
parentheses, multiple subtractions are performed from left to right.

The essential problem is that there are two different ways to understand an
expression like "8 - 4 - 3". We can parse it as an expression ("8 - 4") minus
a term ("3") or as a term ("8") minus an expression ("4 - 3"). The convention
says that it should be the former, but our grammar rule:

expression → term '-' expression

says it’s the latter. The problem didn’t arise for addition; the values of the two
parses were numerically the same because addition is associative, which means
that we get the same answers whether we consider it to associate from left to right
or from right to left.

It might seem that we could fix this by reversing the order of the expression
and term symbols in the grammar, as follows:

expression → expression '+' term

expression → expression '-' term

expression → term

Then the corresponding parser definition in the code becomes:

$expression = alternate(T(concatenate($Expression,

lookfor(['OP', '+']),

$Term),

sub { $_[0] + $_[2] }),

T(concatenate($Expression,

lookfor(['OP', '-']),

$Term),

sub { $_[0] - $_[2] }),

$Term);

Unfortunately, if we do this, the parser no longer works. The first thing that
the $expression parser does is to look for another expression, so it recurses
forever. Returning to the sentential form trees of Section 8.2.1, we see that this
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is because there’s a branch that looks like this:

…
…

…

expression expression + term expression + expression + term

…

…

The topmost branch is infinite, so we run the risk that a depth-first search on it
will never terminate. We’d been dealing with this risk by pruning the search at
each node whose initial terminal symbols failed to match the target sentence. But
here, none of the nodes in the topmost branch have any initial terminal symbols,
so the pruning doesn’t work, and the search is infinite.

A grammar rule of the form:

symbol → symbol stuff...

is called left-recursive; recursive-descent parsers hang forever whenever they meet
left-recursive grammar rules. In general, left-recursion can be quite complicated;
consider:

A → B stuff

B → C stuff

C → A stuff

Our example is much simpler; the recursion loop involves only one symbol
instead of three. Fortunately, there’s a technique for eliminating simple loops
from a grammar. If we have a set of rules like this:

symbol → symbol A | symbol B | X | Y

We can transform them into equivalent rules that aren’t left-recursive. Let’s con-
sider what a symbol must begin with. Clearly, it must be an X or a Y. symbol might
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expand to something more complicated that also begins with a symbol, but in
that case we just have to ask the same question again. So a symbol must be an X

or a Y followed by a tail of A’s and B’s. The equivalent grammar is:

symbol → X symbol_tail | Y symbol_tail

symbol_tail → A symbol_tail | B symbol_tail | (nothing)

For example, our left-recursive subtraction and addition rule:

expression → expression '+' term

expression → expression '-' term

expression → term

becomes:

expression → term expression_tail

expression_tail → '+' term expression_tail

expression_tail → '-' term expression_tail

expression_tail → (nothing)

expression_tail here represents the “rest of an expression.” A full expression is a
single term followed by the rest of an expression; the rest of the expression is
either empty, or else a + or - followed by another term followed by the rest of
the rest of the expression. If we apply a similar transformation to the term rule
of the grammar, we get:

entire_input → expression 'End_of_Input'

expression → term expression_tail

expression_tail → '+' term expression_tail

expression_tail → '-' term expression_tail

expression_tail → (nothing)

term → factor term_tail

term_tail → '*' factor term_tail

term_tail → '/' factor term_tail

term_tail → (nothing)

factor → 'INT'

factor → '(' expression ')'
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Now, however, we have another problem. Before, we had rules like:

expression → term '+' expression

and it was obvious how to compute the value of an expression, given the values
of the subterm and the subexpression: Just add them. But what value should
we assign to an expression_tail? It represents an incomplete expression, such as
"+ 3 - 4". When we’re parsing an expression like "1 + 3 - 4", the "1" will
become the term part at the beginning of the expression rule, and the "+ 3 - 4"

will become the expression_tail part at the end of the expression rule. The value
of the expression can’t be calculated until we finish parsing the expression_tail and
assign a value to it, because the value of the expression_tail will be passed to the
expression rule for the computation of its value. But the value of an expression_tail
can’t be a number, because it’s an incomplete expression; the parser won’t know
what number it is until it finished parsing the complete expression.

The natural way to represent the result of an incomplete computation such
as an expression_tail is as a function. An expression tail is like an expression with
a blank space at the beginning:

_______ + 3 - 4

which can be represented as the function:

sub { $_[0] + 3 - 4 }

When the missing parts of the expression become known, they can be passed as
arguments to the function, which will compute the final result. The value of an
expression_tail will be a function, which, given the missing part of the expression,
computes the final result. The action rule for the complete expression will get a
term value and an expression_tail function, and will pass the value to the function
to compute the final result.

As an example, let’s consider "5 + 7". Let’s also disregard multiplication and
division for a little while; our grammar will be:

expression → term expression_tail

expression_tail → '+' term expression_tail

| '-' term expression_tail

| (nothing)

term → 'INT' | '(' expression ')'

If "5 + 7" is to be an expression, it must be a term followed by an expression_tail.
The term is clearly "5", and has a value of 5.
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The expression_tail matches the first alternative, and is a “+” followed by
a term followed by another expression_tail. The term here is clearly "7", and
the following expression_tail is empty. The main expression_tail represents the
partial input "+ 7", and so its value should be a function that adds 7 to its
argument: sub { $_[0] + 7 }.

The main expression now gets two values, which are 5 and sub { $_[0]+ 7 }.
It passes the number to the function; the result is the value of the expression, 12.

To program expression, we write:

$expression = T(concatenate($Term, $Expression_Tail),

sub { $_[1]->($_[0]) }

);

It gets the value of the term ($_[0]), which is a number, and the value of the
partial expression expression_tail ($_[1]), which is a function. It passes the term
value to the expression tail function, and returns the result.

The code for expression_tail is a little more complicated. Let’s consider just
the case for the rule:

expression_tail → '+' term expression_tail

The parser code looks like this:

$expression_tail = alternate(T(concatenate(lookfor(['OP', '+']),

$Term,

$Expression_Tail),

sub { ... }),

Suppose the input has this form:

LEFT + term RIGHT

Say that $term_value is the number value returned by the $Term parser for
the term part of the input, and $rest is the function value returned by the
$expression_tail parser for the RIGHT part of the input. The argument to T()

is a function factory that wants to build a new function that represents the + term
RIGHT part of the input.

The arguments to the function factory are the $term_value and the $RIGHT

function (and also the "+" token):

sub {

my ($plus_token, $term_value, $RIGHT) = @_;
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The job of this function factory is to build another function that given the value
of LEFT, will return the value of the entire expression. The function we want to
build is:

return sub { $RIGHT->($_[0] + $term_value) }

}

The code for the minus rule is almost the same:

T(concatenate(lookfor(['OP', '-']),

$Term,

$Expression_Tail),

sub {

my ($plus_token, $term_value, RIGHT) = @_;

return sub { $RIGHT->($_[0] - $term_value) }

}),

The code for the “nothing” rule is simple. The “rest” of the expression contains
nothing at all. We want a function, which, given the value of the left part of
the expression, returns the value of the entire expression. But if the “rest” of the
expression is empty, then the value of the left part of the expression is the value
of the entire expression. So the function we want is just the function that returns
its argument unchanged:

T(\&nothing, sub { sub { $_[0] } })

The code for the entire expression parser is:

$expression = T(concatenate($Term, $Expression_Tail),

sub { $_[1]->($_[0]) }

);

$expression_tail = alternate(T(concatenate(lookfor(['OP', '+']),

$Term,

$Expression_Tail),

sub { my ($op, $tv, $rest) = @_;

sub { $rest->($_[0] + $tv) }

}),

T(concatenate(lookfor(['OP', '-']),

$Term,

$Expression_Tail),

sub { my ($op, $tv, $rest) = @_;
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sub { $rest->($_[0] - $tv) }

}),

T(\&nothing, sub { sub { $_[0] } })

);

With this structure, the parser works perfectly for all arithmetic expressions. To
make it generate ASTs instead of numbers, we use:

$expression = T(concatenate($Term, $Expression_Tail),

sub { $_[1]->($_[0]) }

);

$expression_tail = alternate(T(concatenate(lookfor(['OP', '+']),

$Term,

$Expression_Tail),

sub { my ($op, $tv, $rest) = @_;

sub { [ '+', $tv, $rest->($_[0]) ] }

}),

T(concatenate(lookfor(['OP', '-']),

$Term,

$Expression_Tail),

sub { my ($op, $tv, $rest) = @_;

sub { [ '-', $tv, $rest->($_[0]) ] }

}),

T(\&nothing, sub { sub { $_[0] } })

);

8.4.3 A Variation on star()

We can use the T() function to improve our definition for star(). Formerly,
the parser star(lookfor('INT')) would have returned a value like [1, [2, [3,

[4, undef]]]], because at each stage it’s using concatenate() to join the values
returned by $p, its argument, and $p_star, the recursive call to itself. We can
use T() to adjust the value that comes out of concatenate() so that the result is
[1, 2, 3, 4] instead:

sub star {

my $p = shift;

my $p_star;

$p_star = alternate(T(concatenate($p, parser { $p_star->(@_) }),

sub { my ($first, $rest) = @_;
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defined $rest ? [$first, @$rest] : [$first]

}),

\&nothing);

}

The function we give to T() is responsible for appending the single value returned
by $p to the (possibly empty) list of values returned by $p_star to generate a
new list.

Given an input that’s unacceptable to $p, star($p) succeeds, consuming
none of the tokens, and returns an undefined value, behaving essentially like
nothing(). We might prefer for it to return an empty array. In that case, we
should use this version:

sub null_list {

my $input = shift;

return ([], $input);

}

sub star {

my $p = shift;

my $p_star;

$p_star = alternate(T(concatenate($p, parser { $p_star->(@_) }),

sub { my ($first, $rest) = @_;

[$first, @$rest];

}),

\&null_list);

}

null_list() is like nothing(): It never consumes any input, and it always
succeeds. But unlike nothing(), it returns an empty array instead of an unde-
fined value. With this change, we no longer need the special-casery in the
transformation function.

Having done this, we can simplify our elimination of left recursion. Instead
of converting this:

A → A b | c

to this:

A → c A_tail

A_tail → b A_tail | (nothing)
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we can convert it to this:

A → c star(b)

Similarly, this:

symbol → symbol A | symbol B

symbol → X | Y

becomes this:

symbol → (X | Y) star(A | B)

With this transformation, our original grammar for expressions:

expression → expression '+' term | expression '-' term | term

term → term '*' factor | term '/' factor | factor

factor → 'INT' | '(' expression ')'

is transformed to:

expression → term star('+' term | '-' term)

term → factor star('*' factor | '/' factor)

factor → 'INT' | '(' expression ')'

which is much easier to understand than the version that we saw before, with
the artificial expression_tail and term_tail symbols.

The basic code for the expression parser now looks like this:

$expression = concatenate($Term,

star(alternate(concatenate(lookfor(['OP', '+']),

$Term),

concatenate(lookfor(['OP', '-']),

$Term))));

To get this to compute the right values, we’ll have the + term and - term parts
return functions that, given the value of the left part of an expression, compute
and return the value of the entire expression:

concatenate(lookfor(['OP', '+']), $Term)
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becomes:

T(concatenate(lookfor(['OP', '+']), $Term),

sub { my $term_value = $_[1];

return sub { $_[0] + $term_value }

});

The code for the - term part looks the same, with subtraction substituted for
addition.

The parser generated by the star() call will return a list of these addition or
subtraction functions. The outermost concatenate() call will produce a parser
that expects the value of the leftmost term and the list of expression-computing
functions returned by the star() parser. If the expression is 4+3-5, the arguments
to the parser will be the number 4 and the function list (sub { $_[0] + 3 },
sub { $_[0] - 5 }):

4 + 3 - 5

| | |

4 sub { $_[0] + 3 } sub { $_[0] - 5 }

The outermost parser must compute the complete value of the expression. It
does this by passing the leftmost term value to the first addition or subtraction
function, passing the result to the second addition or subtraction function, and
so on, like this:

sub { my ($total, $funcs) = @_;

for my $f (@$funcs) {

$total = $f->($total);

}

$total;

}

The complete parser for expressions is :

$expression =

T(concatenate($Term, star(alternate(T(concatenate(lookfor(['OP', '+']),

$Term),

sub {

my $term_value = $_[1];
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sub { $_[0] + $term_value };

}),

T(concatenate(lookfor(['OP', '-']),

$Term),

sub {

my $term_value = $_[1];

sub { $_[0] - $term_value };

}),

))),

sub { my ($total, $funcs) = @_;

for my $f (@$funcs) {

$total = $f->($total);

}

$total;

}

);

The corresponding change to the term parser is identical, with multiplication
and division substituted for addition and subtraction.

8.4.4 Generic-Operator Parsers

We’ve already used this operator parser pattern twice, once in expression and once
in term. Since operators are common, we might expect to use the same pattern
in the future. We should try to abstract it into a generic function.

In general, we have a grammar where symbol can be expanded as subpart
OP subpart OP . . . subpart, where OP is left-associative. The parser we just saw
is an example, with symbol, subpart, and OP being replaced by expression, term,
and +, respectively. We’ll write a function, operator(), which, given a parser
for the subpart, a parser that recognizes the operator, and a callback function
that implements the operator (sub { $_[0] + $_[1] } in the case of addition),
generates a parser for sequences of subpart combined with OP. In general we’ll
want multiple operators of the same precedence, but to begin with let’s assume
there’s only one operator at a time. Here’s an example of what we want to produce:
the parser for expression, with only addition, and not subtraction:

$expression =

T(concatenate($Term, star(T(concatenate(lookfor(['OP', '+']),

$Term),

sub {
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my $term_value = $_[1];

sub { $_[0] + $term_value };

}),

)),

sub { my ($total, $funcs) = @_;

for my $f (@$funcs) {

$total = $f->($total);

}

$total;

}

);

The outline of our operator() function is:

sub operator {

my ($subpart, $op, $opfunc) = @_;

# Build and return parser like the preceding one

}

To construct the operator() function, we start by copying the expression parser
into the body of sub operator. Then we systematically remove all the expression-
specific code and replace each removed bit with the corresponding argument:

sub operator { CODE LIBRARY
operator-singleopmy ($subpart, $op, $opfunc) = @_;

# Build and return parser like the earlier one

T(concatenate($subpart, star(T(concatenate($op,

$subpart),

sub {

my $subpart_value = $_[1];

sub { $opfunc->($_[0], $subpart_value) };

}),

)),

sub { my ($total, $funcs) = @_;

for my $f (@$funcs) {

$total = $f->($total);

}

$total;

}

);

}
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This does work; operator($Term, lookfor(['op', '+']), sub { $_[0] +

$_[1] }) does generate a parser for sums of terms. We now need to extend
operator() to handle multiple operators of the same precedence. The argument
to star() will be an alternation of several sections, rather than a single section.
The argument to operator() itself may contain several $opses and $opfuncs.
We’ll call it like this:

operator($Term, [lookfor(['OP', '+']), sub { $_[0] + $_[1] }],

[lookfor(['OP', '-']), sub { $_[0] - $_[1] }]);

sub operator {

my ($subpart, @ops) = @_;

my (@alternatives);

First we generate the alternatives that we’ll give to star():

for my $operator (@ops) {

my ($op, $opfunc) = @$operator;

push @alternatives,

T(concatenate($op,

$subpart),

sub {

my $subpart_value = $_[1];

sub { $opfunc->($_[0], $subpart_value) }

});

}

Then we build the parser from the alternatives:

my $result =

T(concatenate($subpart,

star(alternate(@alternatives))),

sub { my ($total, $funcs) = @_;

for my $f (@$funcs) {

$total = $f->($total);

}

$total;

});

}

This is a lot of hairy code, but the payoff is excellent. We can stick the hairy
operator() function into our parser-generating library and forget about it.
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The code to generate the parsers for term and expression becomes short and
transparent:

$expression =

operator($Term, [lookfor(['OP', '+']), sub { $_[0] + $_[1] }],

[lookfor(['OP', '-']), sub { $_[0] - $_[1] }]);

$term =

operator($Factor, [lookfor(['OP', '*']), sub { $_[0] * $_[1] }],

[lookfor(['OP', '/']), sub { $_[0] / $_[1] }]);

Now that we have operator(), it’s easy to imagine the next step: a parser generator
function whose argument is an entire operator precedence table, and that, given
a table like this:

[

[['OP', '*'], ['OP', '/']], # highest precedence

[['OP', '+'], ['OP', '-']], # lower precedence

]

does the work of the two calls to operator(), or more if we ask it to.

8.4.5 Debugging

Debugging programs containing complex nested functions can be difficult.
The Perl interactive debugger isn’t very helpful. If $z contains a reference to
an anonymous function, the debugger won’t give us much useful information
about it:

DB<119> x $z

0 CODE(0x849aca0)

-> &main::__ANON__[arith15.pl:169] in arith15.pl:159-169

Just the file and the line numbers in the file. It could easily display the code, but
it doesn’t; with some extensions it could display the values of the subroutine’s
lexical variables, but again it doesn’t. Internally, the debugger is a tremendous
mess, and these improvements probably aren’t forthcoming.1 So we have to fall
back on other techniques.

1 Someone looking for a fun project to garner fame and renown in the Perl world would do well to
consider replacing the debugger.
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The first problem with the debugger’s display of anonymous functions is
that it’s hard to tell them apart. CODE(0x849aca0) doesn’t communicate anything
intelligible. The easy way to fix this is to have a hash that maps anonymous
functions to names or descriptions:

$N{$z} = "main parser";

Now if we’re in the middle of the program and we see a mysterious anonymous
function, we can ask for:

print $N{$mystery};

and get something like:

Third alternative of 'expression' symbol

A variation on this technique makes the functions into blessed objects with an
overloaded stringification operator. The stringification operator simply returns
the appropriate element of %N.

Another variation that may not be for everyone, but that I’ve sometimes
used when the functions had little natural significance, is to tie the %N hash and
have it invent a name when asked for the name of a function that hasn’t already
had a name assigned:

open NAMES, "<", $namefile or die ...;

sub STORE {

my ($self, $key, $name) = @_;

$self->{$key} = $name;

}

sub FETCH {

my ($self, $key) = @_:

if (exists $self->{$key}) { return $self->{$key} }

chomp(my $name = <NAMES>);

$self->{$key} = $name;

warn "Function had no name; I’ll call it '$name'.\n";

return $name;

}
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Then you fill up $namefile with twenty or thirty random but evocative nouns,
such as:

Máximo Perez
The Train
Luis Melián Lafineur
Olimar
Brimstone
Clubs
The Whale
Gas
The Cauldron
Napoleon
Agustín de Vedia
Nine
The Negro Timoteo
The Flesh Blanket

Even meaningless names can be helpful. They don’t tell you what the function
does, but they give your memory a peg to hang an association on, and you’re
likely to recognize a function you’ve seen before when it comes up again. If you
don’t like the name that was automatically assigned, you can easily replace it by
assigning a different value to %N.

From here it’s a small step to having the functions receive their names at their
time of manufacture; for example:

my $CON = 'A';

sub concatenate {

my $id;

if (ref $_[0]) { $id = "Unnamed concatenation $CON"; $CON++ }

else { $id = shift }

my @p = @_;

return \&nothing if @p == 0;

return $p[0] if @p == 1;

my $parser = parser {

my $input = shift;

my $v;

my @values;

for (@p) {

($v, $input) = $_->($input) or return;
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push @values, $v;

}

return values;

};

$N{$parser} = $id;

return $parser;

}

Now concatenate() gets an optional initial argument, which is a string that will
be used as the name of the parser it generates; for example:

$factor = alternate(lookfor('INT'),

T(concatenate("factor : '(' expr ')'",

lookfor(['OP', '(']),

$Expression,

lookfor(['OP', ')'])),

sub { $_[1] })

);

We can of course do the same thing to alternate():

$factor = alternate("factor symbol parser",

lookfor('INT'),

T(concatenate("factor : '(' expr ')'",

lookfor(['OP', '(']),

$Expression,

lookfor(['OP', ')'])),

sub { $_[1] })

);

Since $id is a lexical variable, it can be captured and used inside the parser itself:

package Parser::Debug;CODE LIBRARY
Parser::Debug.pm use base 'Exporter';

use Parser ':all';

@EXPORT_OK = @Parser::EXPORT_OK;

%EXPORT_TAGS = %Parser::EXPORT_TAGS;

my $CON = 'A';

sub concatenate {

my $id;
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if (ref $_[0]) { $id = "Unnamed concatenation $CON"; $CON++ }

else { $id = shift }

my @p = @_

return \&n ll if @p == 0;

return $p[ ] if @p == 1;

my $parser = parser {

my $input = shift;

debug "Looking for $id\n";

my $v;

my @values;

my ($q, $np) = (0, scalar @p);

for (@p) {

$q++;

unless (($v, $input) = $_->($input)) {

debug "Failed concatenated component $q/$np\n";

return;

}

debug "Matched concatenated component $q/$np\n";

push @values, $v;

}

debug "Finished matching $id\n";

return \@values;

};

$N{$parser} = $id;

return $parser;

}

With a suitable definition of debug(), this will generate output like:

Looking for factor : '(' expr ')'

Matched concatenated component 1/3

Matched concatenated component 2/3

Matched concatenated component 3/3

Finished matching factor : '(' expr ')'

or:

Looking for factor : '(' expr ')'

Failed concatenated component 1/3
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The easiest thing to do in debug() is just to print out the message. But we can
do a little better:

sub debug ($) {

return unless $DEBUG || $ENV{DEBUG};

my $msg = shift;

my $i = 0;

$i++ while caller($i);

$I = "| " x ($i-2);

print $I, $msg;

}

The while caller loop computes the depth to which function calls have been
nested. $I is an indentation string that is used to indent the debugging message
accordingly. Now the output while parsing an expression like "8 - 3" begins
like this:

| Looking for Input: expression EOI

| (Next token is INT 8)

| | | | Looking for expression : term star('+'term | '-' term)

| | | | (Next token is INT 8)

| | | | | | | Looking for term: factor star('*'factor | '/' factor)

| | | | | | | (Next token is INT 8)

| | | | | | | | | Looking for factor: INT | '(' expression ')'

| | | | | | | | | (Next token is INT 8)

| | | | | | | | | Trying alternative 1/2

| | | | | | | | | | Looking for token [INT]

| | | | | | | | | | Next token is [INT 8]

| | | | | | | | | | Token matched

| | | | | | | | | Matched alternative 1/2

| | | | | | | Matched concatenated component 1/2

...

Capturing $id inside the generated parser, as we’ve done, causes a problem. If
we want to change the name of a parser after we’ve constructed it, we can’t,
because the name is captured in an inaccessible lexical variable inside the parser.
We can change the name in the %N hash, but when the parser prints debug mes-
sages, it will still use the old name. One way to fix this is to have the debug
messages refer to %N; another way is to provide each parser with a method for
changing its name. The %N tactic is easier by far. Using a global variable like
this should make you uncomfortable, and when you do it, the first question
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you should ask is “What if there are several different parsers in one program?
Will their overlapping uses of %N collide?” In this case, though, there’s no prob-
lem. Each anonymous function in the program resides at a different address,
which means that the CODE(0x436c1d) strings will all be unique. As long as
the parsers don’t tamper with hash elements they don’t understand, all will
be well.

Why would we want to change the name of a parser? We’ll see in a minute.
Before that, let’s note that the names we’ve been using are formulaic, which
means that the next step is to get the parser construction functions to generate
the names automatically. We begin by naming the basic parsers:

$N{\&End_of_Input} = 'EOI';

$N{\&nothing} = '(nothing)';

$N{$Expression} = 'expression';

$N{$Term} = 'term';

$N{$Factor} = 'factor';

Then we fix up concatenate() and alternate() to generate names from the
names of their arguments:

sub concatenate {

my @p = @_;

return \&nothing if @p == 0;

return $p[0] if @p == 1;

my $id = "@N{@p}";

my $p = parser {

...

};

$N{$p} = $id;

return $p;

}

sub alternate {

my @p = @_;

return parser { return () } if @p == 0;

return $p[0] if @p == 1;

my $id = join " | ", @N{@p};
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my $p = parser {

...

};

$N{$p} = "($id)";

return $p;

}

Similarly, the description of the parser produced by T() is the same as the
description of its argument:

sub T {

my ($parser, $transform) = @_;

my $p = parser {

...

};

$N{$p} = $N{$parser};

return $p;

}

Now we change lookfor() to name its parsers after the token they’re looking for:

sub lookfor {

my $wanted = shift;

...

$N{$parser} = "[@$wanted]";

return $parser;

}

Finally, we change star():

sub star {

my $p = shift;

my ($p_star, $conc);

$p_star = alternate(T($conc = concatenate($p, parser { $p_star->(@_) }),

sub { my ($first, $rest) = @_;

[$first, @$rest];

}),

\&null_list);

$N{$p_star} = "star($N{$p})";

$N{$conc} = "$N{$p} $N{$p_star}";

return $p_star;

}
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This is why we needed to be able to change the names of parsers. The arguments
to concatenate() are the argument $p, whose description, let’s say, is P, and the
eta-converted version of $p_star, which didn’t have a description. The parser
that would come out of concatenate() therefore would have a name something
like "P ", and the parser that would come out of alternate() would be named
something like P | (nothing), neither of which is very helpful. After the parsers
are generated, we change the name of the alternation, $p_star itself, to star(P),
and the name of the concatenation, temporarily stored in $conc, to P star(P).

The output, including automatically generated names, now looks like this
(the input was "8 - 3"):

| Looking for expression EOI

| (Next token is INT 8)

| | | | Looking for term star(([OP +] term | [OP -] term))

| | | | (Next token is INT 8)

| | | | | | | Looking for factor star(([OP *] factor | [OP /] factor))

| | | | | | | (Next token is INT 8)

| | | | | | | | | Looking for ([INT] | [OP (] expression [OP )])

| | | | | | | | | (Next token is INT 8)

| | | | | | | | | Trying alternative 1/2

| | | | | | | | | | Looking for token [INT]

| | | | | | | | | | Next token is [INT 8]

| | | | | | | | | | Token matched

| | | | | | | | | Matched alternative 1/2

| | | | | | | Matched concatenated component 1/2

| | | | | | | | Looking for star(([OP *] factor | [OP /] factor))

| | | | | | | | (Next token is OP -)

| | | | | | | | Trying alternative 1/2

... looking for multiplicative factors ...

| | | | | | | | Failed alternative 1/2

| | | | | | | | Trying alternative 2/2

| | | | | | | | | | Looking for nothing

| | | | | | | | | | (Next token is OP -)

| | | | | | | | Matched alternative 2/2

| | | | | | | Matched concatenated component 2/2

| | | | | | | Finished matching factor star(([OP *] factor | [OP /] factor))

| | | | Matched concatenated component 1/2

| | | | | Looking for star(([OP +] term | [OP -] term))

| | | | | (Next token is OP -)

| | | | | Trying alternative 1/2

...
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When parsing goes wrong, examination of this debugging output is usually
enough to figure out where the problem lies.

8.4.6 The Finished Calculator

Let’s finish the calculator now. It starts with the lexer that we saw before:

use Parser ':all';CODE LIBRARY
calculator use Lexer ':all';

my $input = allinput(\*STDIN);

my $lexer = iterator_to_stream(

make_lexer($input,

['TERMINATOR', qr/;\n*|\n+/ ],

['INT', qr/\b\d+\b/ ],

['PRINT', qr/\bprint\b/ ],

['IDENTIFIER', qr|[A-Za-z_]\w*| ],

['OP', qr#\*\*|[-=+*/()]# ],

['WHITESPACE', qr/\s+/, sub { "" } ],

)

);

The complete grammar for the calculator is:

program → star(statement) 'End_of_Input';

statement → 'PRINT' expression 'TERMINATOR'

| 'IDENTIFIER' '=' expression 'TERMINATOR'

expression → term star('+' term | '-' term)

term → factor star('*' factor | '/' factor)

factor → base ('**' factor | (nothing))

base → 'INT' | 'IDENTIFIER' | '(' expression ')'

There are two new grammar rules at the top: program, which represents the
entire input, and statement, which represents a single statement, either a variable
assignment or a request to print a result.2

2 In most modern languages, including Perl and C, statements may have a simpler structure, typically
not much different than an expression. For example, in Perl, print $x and $x = $y are both
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The grammar for expressions is a little more complicated also. The factor
symbol no longer represents an atomic expression. Instead, it contains an optional
exponentiation operation. Filling the atomic role formerly played by factor is a
new symbol, base, which as before can be a number or a parenthesized expression,
and now can also be a variable name.

my %VAR;

my ($base, $expression, $factor, $program, $statement, $term);

$Base = parser { $base->(@_) };

$Expression = parser { $expression->(@_) };

$Factor = parser { $factor->(@_) };

$Program = parser { $program->(@_) };

$Statement = parser { $statement->(@_) };

$Term = parser { $term->(@_) };

$program = concatenate(star($Statement), \&End_of_Input);

$statement = alternate(T(concatenate(lookfor('PRINT'),

$Expression,

lookfor('TERMINATOR')),

sub { print ">> $_[1]\n" }),

T(concatenate(lookfor('IDENTIFIER'),

lookfor(['OP', '=']),

$Expression,

lookfor('TERMINATOR')

),

sub { $VAR{$_[0]} = $_[2] }),

);

When the parser recognizes a complete print statement, it prints out the value
of the expression. When it recognizes a complete assignment statement, it stores
the value of the expression in a hash, %VAR, with the variable’s name as a key. (We
can prepopulate %VAR with the values of useful constants, such as π .)

The parsers for expression and term are exactly as before:

$expression =

operator($Term, [lookfor(['OP', '+']), sub { $_[0] + $_[1] }],

[lookfor(['OP', '-']), sub { $_[0] - $_[1] }]);

expressions, the former returning true or false to indicate success or failure of printing, and the
latter returning the value of $y. If we do this, we get the opportunity to do things like $result =

print $x and $x = $y = $z, which the calculator won’t allow. It would have been both simpler
and more useful to write the calculator this way, and I introduced the special statement forms solely
for variety.
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$term =

operator($Factor, [lookfor(['OP', '*']), sub { $_[0] * $_[1] }],

[lookfor(['OP', '/']), sub { $_[0] / $_[1] }]);

Factors are a little different than in earlier examples, because they may now
contain ** operators:

$factor = T(concatenate($Base,

alternate(T(concatenate(lookfor(['OP', '**']),

$Factor),

sub { $_[1] }),

T(\&nothing, sub { 1 }))),

sub { $_[0] ** $_[1] });

For an expression like 3 ** 4, we assign a value of 4 to the ** 4 part; the final
value computation assigns a value of 81 to the entire 3 ** 4 expression. A missing
exponent has a value of 1, so that 3 gets the same value as 3 ** 1. We haven’t
used operator() here because operator() generates parsers for left-associative
operators, and ** is right associative. 2**2**3 means 2**(2**3) = 256, not
(2**2)**3 = 64.

$base = alternate(lookfor('INT'),

lookfor('IDENTIFIER',

sub { $VAR{$_[0][1]} || 0 }),

T(concatenate(lookfor(['OP', '(']),

$Expression,

lookfor(['OP', ')'])),

sub { $_[1] })

);

The parser for base is just like the old parser for term, except with an extra clause
for handling identifiers. To recover the value of an identifier, we look up the name
of the identifier in the %VAR hash. Undefined variables behave like the number 0.
Alternatively, we could have the calculator issue a warning message for undefined
variables.

The calculator is complete; all we need is to invoke the parser:

$program->($lexer);

Given the following input:

a = 12345679 * 6

b=a*9; c=0

print b
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it produces the correct output:

>> 666666666

8.4.7 Error Diagnosis and Recovery

Although the calculator works fine on correct inputs, it fails unpleasantly on
erroneous input. If we delete the semicolon from the previous example, yielding:

a = 12345679 * 6

b=a*9 c=0

print b

then the parser simply fails after the assignment to a, returning an undefined
value. No error message is generated.

  -            

One easy way to put some error handling into the parser is to build a special-
purpose sub-parser whose job is to recover from errors. If a statement goes awry,
control will pass to the error-recovery parser. The error-recovery parser will try to
resynchronize the parser with the input by discarding tokens until it gets to the
end of the bad statement, and then restarting the parser from the new position:

$statement = alternate(T(concatenate(lookfor('PRINT'),

$Expression,

lookfor('TERMINATOR')),

sub { print ">> $_[1]\n" }),

T(concatenate(lookfor('IDENTIFIER'),

lookfor(['OP', '=']),

$Expression,

lookfor('TERMINATOR')

),

sub { $VAR{$_[0]} = $_[2] }),

error(lookfor('TERMINATOR'), $Statement),

);

The error() call here generates a new parser, which is a third alternative form
for statement. If, when trying to parse a statement, the upcoming input fails to
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match either of the first two forms, the error-recovery parser returned by error()

will be invoked.
error()’s first argument is another parser whose job is to identify a good place

in the input to restart the parsing process. The error-recovery parser generated by
error() will discard one token at a time until it reaches a point in the input that
is acceptable to error()’s first argument. In this case, a good place to restart is
immediately following a TERMINATOR token, because that is where a new statement
is likely to begin. When the error-recovery parser is ready to continue, it invokes
another parser to continue the job on the remaining input stream; this other
parser is error()’s second argument. In this case, once the error-recovery parser
reaches a newline, it invokes $Statement to start looking for another statement.

The code for error() is fairly straightforward. First we’ll see it without
debugging clutter:

sub error {

my ($checker, $continuation) = @_;

my $p;

$p = parser {

my $input = shift;

while (defined($input)) {

if (my (undef, $result) = $checker->($input)) {

$input = $result;

last;

} else {

drop($input);

}

}

return unless defined $input;

return $continuation->($input);

};

$N{$p} = "errhandler($N{$continuation} -> $N{$checker})";

return $p;

}

The essential line is drop($input), which discards a token from the input. This
is done until either the $checker parser (lookfor('TERMINATOR') in the example)
succeeds, or the input is exhausted. Afterward, the error-handler parser continues
by invoking the continuation ($Statement in the example) on the remaining
input.
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Here’s the version with debugging messages:

sub error {

my ($checker, $continuation) = @_;

my $p;

$p = parser {

my $input = shift;

debug "Error in $N{$continuation}\n";

debug "Discarding up to $N{$checker}\n";

my @discarded;

while (defined($input)) {

my $h = head($input);

if (my (undef, $result) = $checker->($input)) {

debug "Discarding $N{$checker}\n";

push @discarded, $N{$checker};

$input = $result;

last;

} else {

debug "Discarding token [@$h]\n";

push @discarded, $h->[1];

drop($input);

}

}

warn "Erroneous input: ignoring '@discarded'\n" if @discarded;

return unless defined $input;

debug "Continuing with $N{$continuation} after error recovery\n";

$continuation->($input);

};

$N{$p} = "errhandler($N{$continuation} -> $N{$checker})";

return $p;

}

On our erroneous input, the calculator program performs the assignment to a as
instructed on the first line, and then says:

Erroneous input: ignoring ’b = a * 9 c = 0

’

>> 0

The >> 0 is the result of printing out the value of b in the final line; b was unset
and defaulted to 0 because of the syntax error in the previous line.
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Another convenient way to deal with errors is to change the structure of the
parsers. Instead of returning undef to indicate a failed parse, they will throw
an exception. The exception will include information about what the parser
would have accepted and what it saw instead. Error-handler parsers will catch
the exceptions, issue error messages, resynchronize, and restart.

First, a brief review of the semantics of exceptions in Perl. Perl’s exception-
handling mechanism is unfortunately named eval:

my $result = eval { ... };

Code in the eval is run in exactly the same way as any other code, returning the
same result into $result, except that if it throws an exception, the exception will
be caught by the eval instead of terminating the program. If the code inside the
eval throws an exception, $result becomes undefined.

Exceptions are thrown with the die function. They may be arbitrary data
objects. After an exception is caught, the value thrown is placed into the special
variable $@.

To rewrite the End_of_Input() parser in this style, we say:

sub End_of_Input {CODE LIBRARY
Parser::Except.pm

my $input = shift;

return (undef, undef) unless defined($input);

die ["End of input", $input];

}

If there is no more input, the parser returns a value as before. If there is more
input, the parser fails by calling die. The die value includes a string describing
what was being sought ("End of Input") and what was found instead ($input).

Here’s lookfor():

sub lookfor {

my $wanted = shift;

my $value = shift || sub { $_[0][1] };

my $u = shift;

$wanted = [$wanted] unless ref $wanted;

my $parser = parser {

my $input = shift;

unless (defined $input) {
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die ['TOKEN', $input, $wanted];

}

my $next = head($input);

for my $i (0 .. $#wanted) {

next unless defined $wanted->[$i];

unless ($wanted->[$i] eq $next->[$i]) {

die ['TOKEN', $input, $wanted];

}

}

my $wanted_value = $value->($next, $u);

return ($wanted_value, tail($input));

};

$N{$parser} = "[@$wanted]";

return $parser;

}

If the lookfor()-generated parser sees the token it wants, it returns the same
value as the old version. If it sees end-of-input or the wrong token, it throws an
exception. As before, the exception value includes a tag indicating what kind of
thing was being sought (a TOKEN), and what was found instead ($input). Here it
also includes auxiliary information indicating what token was sought.

nothing() requires no changes because it never fails. concatenate() requires
no changes, although we have an opportunity to make it simpler. It no longer
needs to check to see if its sub-parsers have succeeded and terminate prematurely
if one hasn’t. It can assume that they all will succeed, because if one doesn’t, it
will throw an exception that will terminate concatenate() prematurely anyway.

alternate() is the interesting one. When a sub-parser succeeds, it stops and
returns the value, as before. When a sub-parser fails, the alternate() parser
needs to catch the exception so that it can try the next sub-parser. It installs the
exception in an array @failures; if all the sub-parsers fail, @failures will contain
the list of reasons why, and alternate() can throw an exception that includes
this information:

sub alternate {

my @p = @_;

return parser { return () } if @p == 0;

return $p[0] if @p == 1;

my $p;

$p = parser {
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my $input = shift;

my ($v, $newinput);

my @failures;

for (@p) {

eval { ($v, $newinput) = $_->($input) };

if ($@) {

die unless ref $@;

push @failures, $@;

} else {

return ($v, $newinput);

}

}

die ['ALT', $input, \@failures];

};

$N{$p} = "(" . join(" | ", map $N{$_}, @p) . ")";

return $p;

}

The die unless ref $@ line is there to propagate any exception that has to
do with a programming error, such as division by zero. If we didn’t propagate
these, then they would get absorbed into the @failures array, and might be
thrown away.

Finally, we need a function to actually catch exceptions and issue a report.
Here’s a simple one:

sub error {

my ($try) = @_;

my $p;

$p = parser {

my $input = shift;

my @result = eval { $try->($input) };

if ($@) {

display_failures($@) if ref $@;

die;

}

return @result;

};

}

Its argument $try is a parser; error() returns a new parser that tries $try. If $try
succeeds, error() returns its value. If $try fails, error() issues an error report
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with display_failures() and then calls die to propagate the same exception up
to its caller.

Here’s a rather elaborate implementation of display_failures():

sub display_failures {

my ($fail, $depth) = @_;

$depth ||= 0;

my $I = " " x $depth;

my ($type, $position, $data) = @$fail;

my $pos_desc = "";

while (length($pos_desc) < 40) {

if ($position) {

my $h = head($position);

$pos_desc .= "[@$h] ";

} else {

$pos_desc .= "End of input ";

last;

}

$position = tail($position);

}

chop $pos_desc;

$pos_desc .= "..." if defined $position;

if ($type eq 'TOKEN') {

print $I, "Wanted [@$data] instead of '$pos_desc'\n";

} elsif ($type eq 'End of input') {

print $I, "Wanted EOI instead of '$pos_desc'\n";

} elsif ($type eq 'ALT') {

print $I, ($depth ? "Or any" : "Any"), " of the following:\n";

for (@$data) {

display_failures($_, $depth+1);

}

}

}

display_failures() is expecting to get at least one argument, which is the
exception object, and has the form [$type, $position, $data], where $type is
just an identifying string, $position is the position in the input stream at which
the error occurred, and the $data is optional and has a form that depends on the
$type.
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The middle section analyzes the input tokens that appear starting at
$position and builds up $pos_desc, a string describing them. The end sec-
tion examines $type and prints an appropriate message. The case for ALT is the
interesting one; in this case $data is an array of all the failure exceptions from the
sub-parsers of the alternation. display_failures prints an appropriate header
and calls itself recursively to display the sub-failures.

The top-level call of the main parser on the entire input needs to be protected
by an eval block, so that the program has a chance to recover from an uncaught
exception:

my ($val, $rest) = eval { $program->($lexer) };

if ($@) {

display_failures($@);

}

or we could just use:

my ($val, $rest) = error($program)->($lexer);

Let’s consider the example "a = 3; b + 7; c = 5;" and see what comes out:

Wanted EOI instead of '[IDENTIFIER b] [OP +] [INT 7] [TERMINATOR ;]...'

The parser is reporting that it was unhappy with the “b + 7;” part of the input; it
would have preferred to see the input end right after the “a = 3;” part.

We can get better reporting by using the error() function to insert error
reporting at appropriate places inside the parser. For example, if we change:

$statement = alternate(...);

to:

$statement = error(alternate(...));

then all erroneous statements will be diagnosed. Now the output includes:

Any of the following:

Wanted [PRINT] instead of '[IDENTIFIER b] [OP +] [INT 7] [TERMINATOR ;]...'

Wanted [OP =] instead of '[OP +] [INT 7] [TERMINATOR ;] [IDENTIFIER c]...'

It wanted to see "print" after "a=3;", or else "=" instead of "+" after the "b".
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This parser aborts at the first sign of trouble. We could add error recovery
to the reporting behavior of error() and get the parser to continue and perhaps
diagnose more errors.

8.4.8 Big Numbers

As a final improvement, we’ll change the calculator to support arbitrarily large
numbers. This is trivial; we add:

use Math::BigFloat;

to the top of the program, and change the part of the parser that assigns a value
to an INT token:

lookfor('INT')

becomes:

lookfor('INT', sub { Math::BigFloat->new($_[0][1]) });

which passes the token’s string representation to Math::BigFloat, which con-
structs a big number object for it. Math::BigFloat overloads the normal
arithmetic operators to work on arbitrary-precision numbers, so we don’t need to
change anything else. It would be almost as easy to get the calculator to support
complex numbers; we would use Math::Complex, and add a line to the lexer to
properly interpret constants that matched /\d+i/.

8.5   

As an example that’s probably more practical than the calculator, we’ll implement
a parser for a subset of Perl’s regular expressions. In Chapter 6 we saw a program
that generated a (possibly infinite) stream of all the strings matched by a certain
regex. But it wasn’t convenient to use this program. To get a list of the strings
matched by /(a|b)*c+/, for example, we had to write the following code:

my $z = concat(star(union(literal("a"), literal("b"))),

plus(literal("c")),

);
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What we’d like is to be able to put in a regex in the usual notation and get out
the same stream. Our parsing technology will do this. We’ll build a parser that
can analyze the structure of a regex. As it determines the structure of the regex, it
will call the appropriate stream functions to manufacture the stream of matching
strings.

First, the lexer. Regexes contain the following operators: + * ? ( ) |. Other
than this, they contain atomic expressions, or “atoms,” such as w, \r, and \x0d.
They also contain other items such as character classes, non-capturing parenthe-
ses, lookahead items, and embedded Perl code; we’ll ignore these because they’re
not particularly instructive.

Of these lexical types, the atoms are all syntactically equivalent; any valid
regex that contains a w is still valid if the w is replaced by \r or by \x0d. Similarly,
the quantifiers +, *, and ? are all syntactically equivalent. This suggests the
following lexer:

use Lexer ':all';CODE LIBRARY
regex-parser

use Stream 'node';

my ($regex, $alternative, $atom, $qatom);

sub regex_to_stream {

my @input = @_;

my $input = sub { shift @input };

my $lexer = iterator_to_stream(

make_lexer($input,

['ATOM', qr/\\x[0-9a-fA-F]{0,2} # hex escape

|\\\d+ # octal escape

|\\. # other \

/x, ],

['PAREN', qr/[()]/, ],

['QUANT', qr/[*+?]/ ],

['BAR', qr/[|]/, ],

['ATOM', qr/./, ], # other char

)

);

my ($result) = $regex->($lexer);

return $result;

}
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Regexes are similar in structure to arithmetic expressions, only with fewer dif-
ferent operators. The lowest-precedence operator is the vertical bar, |. A regex
is a series of alternatives separated by vertical bars. Each alternative is a (possi-
bly empty) sequence of (possibly quantified) atoms. For example, in the regex
/(a|b)*c+/, there is a single alternative, consisting of two quantified atoms:
(a|b)* and c+. The parentheses around a|b group the contents into a single
atomic expression. a|b, of course, contains two alternatives, each with one
unquantified atom.

The grammar is:

regex → alternative 'BAR' regex | alternative

alternative → qatom alternative | (nothing)

qatom → atom ('QUANT' | (nothing))

atom → 'ATOM' | '(' regex ')'

As before, we define eta-conversions of the parsers so that the parsers can be
mututally recursive:

use Parser ':all';

my $Regex = parser { $regex ->(@_) };

my $Alternative = parser { $alternative->(@_) };

my $Atom = parser { $atom ->(@_) };

my $QAtom = parser { $qatom ->(@_) };

Building the basic parser from the grammar is straightforward:

# regex -> alternative 'BAR' regex | alternative

$regex = alternate(concatenate($Alternative,

lookfor('BAR'),

$Regex),

$Alternative);

This is fine if we want to generate ASTs for regexes. But what we really want is to
generate streams of strings. If we assume that the values returned for $Alternative
and $Regex are streams, it’s easy to generate the result for the entire regex. We
use the union() function from Section 6.5.1:

use Regex;

# regex -> alternative 'BAR' regex | alternative

$regex = alternate(T(concatenate($Alternative,
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lookfor('BAR'),

$Regex),

sub { Regex::union($_[0], $_[2])}),

$Alternative);

If the regex consists of a single alternative, then the list of strings it matches is
the same as the list of strings matched by the single alternative, so nothing extra
needs to be done.

Similarly, the concat() function from Section 6.5.1 takes the streams that
list the strings matched by two regexes and returns the stream of strings that
are matched by the concatenation of two regexes, so it’s just what we need to
generate the value of a single alternative:

# alternative -> qatom alternative | (nothing)

$alternative = alternate(T(concatenate($QAtom, $Alternative),

\&Regex::concat),

T(\&nothing, sub { Regex::literal("") }));

If the alternative is empty, it matches only the empty string. The call
Regex::literal("") returns a stream that contains the empty string and
nothing else.

my %quant;

# qatom -> atom ('QUANT' | (nothing))

$qatom = T(concatenate($Atom,

alternate(lookfor('QUANT'),

\&nothing),

),

sub { my ($at, $q) = @_;

defined $q ? $quant{$q}->($at) : $at });

%quant = ('*' => \&Regex::star,

'+' => \&Regex::plus,

'?' => \&Regex::query,

);

For quantified atoms, we get a stream that represents the list of strings matched
by the atom, to which we apply the appropriate quantifier. There might not be
a quantifier, in which case the value of the second element of the concatenation
is undefined, and we return the value of the atom unchanged. Note that %quant
is nothing more than a dispatch table.
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We saw star() and plus() back in Chapter 6, but not query(), which is
trivial:

sub query {

my $s = shift;

union(literal(""), $s);

}

It matches anything its argument matches, and also the empty string.

# atom -> 'ATOM' | '(' regex ')'

$atom = alternate(lookfor("ATOM", sub { Regex::literal($_[0][1]) }),

T(concatenate(lookfor(["PAREN", "("]),

$Regex,

lookfor(["PAREN", ")"]),

),

sub { $_[1] }),

);

Finally, we’re down to atoms. If the atom is indeed a single atomic token, then
the list of strings contains the value of the token itself; for example, the atomic
regex w matches the string 'w' and nothing else. If the atom is actually a complete
regex in parentheses, we call the regex parser recursively and return the value it
returns, throwing away the parentheses, just as we did in the arithmetic expression
parser.

Calling Regex::literal() is a little too simple. When the atom is \x0d,
it does not match the string '\x0d'; it matches the single-character string that
contains only a carriage return. We could fix this by passing the token to a
string-interpreting function before passing the result to Regex::literal().

Some atoms are more difficult to handle. This parser treats \b, a word-
boundary assertion, as an atom. It is atomic, but it certainly doesn’t match
the string '\b'. To handle this properly, we’d have to introduce a new kind of
value in our string streams; the new values would denote strings with bound-
ary requirements at the front, the back, or both. When the concat() operator
tried to put together two strings with boundary requirements at the ends at
which they were being joined, it would check the requirements for compati-
bility. If the requirements were incompatible, concat() would skip that pair
of strings and move on. The same scheme could handle lookahead and look-
behind assertions, although the lexer would have to be extended to understand
the notations.
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Still, for all its limitations, the string generator performs adequately for a
first cut. If we give it the input (a|b)+(c|d*), it cheerfully returns an infinite
stream that begins:

a bbb abba

b add abbb

aa aac baaa

ab abc baab

ba bac baba

bb bbc babb

ac bdd bbaa

ad aad bbab

bc abd bbba

bd bad bbbb

aaa bbd addd

aab aaaa aaac

aba aaab aabc

abb aaba abac

baa aabb abbc

bab abaa baac

bba abab ...

8.6 

The regex and calculator examples have many similarities. Here’s an example that
is quite different. We’ll write a program to read in topic outlines and infer a tree
structure from the indentation. A typical input looks like this:

* Parsing

* Lexers

* Emulating the <> operator

* Lexers more generally

* Chained Lexers

* Peeking

* Parsing in General

* Grammars

* Parsing Grammars

* Recursive-Descent Parsers

* Very Simple Parsers

* Parser Operators

* Compound Operators
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* Arithmetic Expressions

* A Calculator

* Left Recursion

* A Variation on 'star'

* Generic-Operator Parsers

* Debugging

* The Finished Calculator

* Error Diagnosis and Recovery

* Error-Recovery Parsers

* Exceptions

* Big Numbers

* Parsing Regexes

* Outlines

* Database-Query Parsing

* The Lexer

* The Parser

* Backtracking Parsers

* Continuations

* Parse Streams

* Overloading

To keep the problem manageable, we’ll make a few simplifying assumptions.
Each item occupies exactly one line, and begins with a “bullet” character. The
first line is the root of the tree, and will be flush with the left margin; each
sub-item will be indented two spaces farther right than its parent.

All the lexers we’ve seen so far have discarded whitespace. The lexer for this
problem mustn’t do that because the whitespace is significant. But the input has
a very simple lexical structure: each line is an “item,” and is separated from the
next item by newlines. So the lexer is simply:

use Lexer ':all'; CODE LIBRARY
outline-parseruse Stream 'node';

my ($tree, $subtree);

sub outline_to_array {

my @input = @_;

my $input = sub { shift @input };

my $lexer = iterator_to_stream(

make_lexer($input,

['ITEM', qr/ˆ.*$/m ],
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['NEWLINE', qr/\n+/ , sub { "" } ],

)

);

my ($result) = $tree->($lexer);

return $result;

}

The grammar is almost as simple. A tree has a root item, followed by zero or
more subtrees. The subtrees must be indented farther to the right than the root
item. The grammar will look something like this:

input → tree 'End_of_input'

tree → 'ITEM' star(subtree)

subtree → tree

This isn’t exactly right, because it doesn’t take into account the indentations.
When the parser sees the root item of a new tree, it needs to record that item’s
indentation; when it tries to parse a subtree, it should succeed if the next item
is indented farther right than the previous root, and fail if it isn’t. Consider this
simple example:

* A

* B

* C

* D

Item C here is a sub-item of B, because it’s indented farther to the right. At this
point, the parser will be looking for sub-items of C. The next item is D. D is not
to the right of C, so it is not a sub-item of C. Moreover, it is not to the right of
B, so it is not a sub-item of B. But D is to the right of A, so D is a sub-item of A.

The grammar needs to be extended to take the indentations into account:

input → tree 'End_of_input'

tree → 'ITEM' <<record indentation of root node>> star(subtree)

subtree → <<check indentation of next item>> tree

Here, <<record indentation of root node>> is a special version of the null
parser. It consumes no input, always succeeds, and returns a meaningless value.
But it also examines the item that was just parsed and makes a note of how far
it was indented. Similarly, <<check indentation of next item>> also consumes
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no input and returns a meaningless value. But it also examines the head of the
input token stream to make sure that the upcoming item is indented to the right
of the current root node. If so, it succeeds, allowing the subtree parser to proceed
to the real business of parsing the subtree, which it does by calling the tree parser
recursively. If not, it fails, causing the subtree parser to fail also.

Here’s the main parser:

use Parser ':all';

use Stream 'head';

my $Tree = parser { $tree->(@_) };

my $Subtree = parser { $subtree->(@_) };

my $LEVEL = 0;

$tree = concatenate(lookfor('ITEM', sub { trim($_[0][1]) }),

action(sub { $LEVEL++ }),

star($Subtree),

action(sub { $LEVEL-- }));

my $BULLET = '[#*ox.+-]\s+';

sub trim {

my $s = shift;

$s =˜ s/ˆ *//;

$s =˜ s/ˆ$BULLET//o;

return $s;

}

The item’s string value is passed to trim(), which just trims off the leading
whitespace and bullet, if any. The next item in the concatenation is an action()

item, which performs the indicated action, incrementing the current indentation
level. Then follow zero or more subtrees, and when the parser has finished parsing
the subtrees, it invokes another action to put the indentation level back the
way it was.

This is action():

sub action {

my $action = shift;

return parser {

my $input = shift;

$action->($input);

return (undef, $input);

};

}
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It takes an action argument and generates a parser that invokes the action,
consumes no tokens, and always succeeds.

As it stands, the value returned by tree is a list of four items, of which two
are the meaningless undefs returned by the action() parsers. As usual, we’ll use
T() to adjust the return value to the tree structure that we want.

The tree structure we’ll construct will be an array. The first element of the
array will be the root node, and the other elements will be the subtrees, in order.
The tree for this example is ["A", ["B", ["C"]], ["D"]]:

* A

* B

* C

* D

The main tree has two subtrees, one rooted at B and one at D. The B subtree has
a sub-subtree, with root C.

concatenate() will pass T() four arguments, as noted before; two will be
undef. The other two will be $_[0], the string value returned by lookfor(), and
$_[2], an array of the subtrees. To assemble these into a tree structure, we just
need to make them into a single array:

$tree = T(concatenate(lookfor('ITEM', sub { trim($_[0][1]) }),

action(sub { $LEVEL++; }),

star($Subtree),

action(sub { $LEVEL--; })),

sub { [ $_[0], @{$_[2]} ] });

The other half of the parser is easier in some ways, more complicated in others:

$subtree = T(concatenate(test(sub {

my $input = shift;

return unless $input;

my $next = head($input);

return unless $next->[0] eq 'ITEM';

return level_of($next->[1]) >= $LEVEL;

}),

$Tree,

),

sub { $_[1] });

sub level_of {
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my ($space) = $_[0] =˜ /ˆ( *)/;

return length($space)/2;

}

The parser built by test() is like the one built by action(), except that it doesn’t
always succeed. Instead, it looks at the value returned by the action, and succeeds
only if the value is true:

sub test {

my $action = shift;

return parser {

my $input = shift;

my $result = $action->($input);

return $result ? (undef, $input) : ();

};

}

The action here makes sure there is an item coming up, and extracts the text from
it. It then uses the level_of() utility function to figure out the nesting depth of
the item’s text, and returns success if it is far enough to the right, failure if not.
If the action succeeds, the subtree parser then invokes $Tree to parse the subtree.
Note that the item examined by the action is not removed from the input stream.
If $Tree returns successfully, T() throws away the meaningless value returned by
the action, and returns the tree structure from $Tree as the value of the subtree.

This parser is complete. Now we’ll make it a little more clever, by having it
detect when the entire input is indented (and ignore the uniform indentation if
so) and having it handle different amounts of indentation at each level. These
two inputs should parse the same:

* A * A

* B * B

* C * C

* D * D

* E * E

* F * F

* G * G

* H * H

* I * I

* J * J

Now that indentations vary, the action that records the current indentation level
will have to actually examine the current item; simply incrementing a counter is
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no longer sufficient. We didn’t give action() parsers any good way to examine
values that have already been parsed, so the easiest way to get what we want is to
attach the action to the lookfor('ITEM') parser:

my @LEVEL;CODE LIBRARY
outline-parser-2 $tree = T(concatenate(T(lookfor('ITEM', sub { $_[0] }),

sub {

my $s = $_[1];

push @LEVEL, level_of($s);

return trim($s);

}),

star($Subtree),

action(sub { pop @LEVEL })),

sub { [ $_[0], @{$_[1]} ]},

);

The task of looking up the level of an item and recording it has been delegated
to the lookfor('ITEM') parser, since it has easy access to the item’s text. We use
T() to hang an action on the lookfor() parser. But since T() was designed for
use with concatenate(), which returns a list of values, we need to override the
normal return value of lookfor() to deliver the entire token instead of just the
string data as usual. The string is extracted from the token and assigned to $s,
and its level is computed and pushed on a stack. The parser needs to record the
levels in a stack because when it finishes parsing the current tree, it will need to
recall the level of the parent root. Let’s return to the small example:

* A

* B

* C

* D

While parsing the C tree, the parser will remember that the current root, B,
is indented two spaces. When it sees item D, also indented two spaces, it will
know that D is not a sub-item of B. This will conclude the parsing of the B
subtree, and the action function will pop the stack. The top stack item will then
be 0, the indentation of A. Since D is to the right of this, D will be parsed as a
subtree of A.

The subtree parser is almost identical to the previous version:

$subtree = T(concatenate(test(sub {

my $input = shift;

return unless $input;
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my $next = head($input);

return unless $next->[0] eq 'ITEM';

return level_of($next->[1]) > $LEVEL[-1];

}),

$Tree,),

sub { $_[1] });

The only difference is that the action compares the level of the current item with
the top of the stack rather than with a scalar counter.

level_of() is a little more complicated, because the entire outline might be
indented, and this has to be accounted for:

my $PREFIX;

sub level_of {

my $count = 0;

my $s = shift;

if (! defined $PREFIX) {

($PREFIX) = $s =˜ /ˆ(\s*)/;

}

$s =˜ s/ˆ$PREFIX//o

or die "Item '$s' wasn’t indented the same as the previous items.\n";

my ($indent) = $s =˜ /ˆ(\s*)/;

my $level = length($indent);

return $level;

}

$PREFIX is a string of whitespace indicating the indentation of the very first item.
All subsequent indentations are figured relative to this. The $PREFIX is trimmed
off each item before its indentation is figured; if an item doesn’t begin with the
same $PREFIX as the others, the parser dies.

Here’s the example tree again, and the result of parsing it:

* A [ 'A',

* B [ 'B', [ 'C', [ 'D' ] ] ],

* C [ 'E', [ 'F' ], [ 'G' ] ],

* D [ 'H', [ 'I' ] ],

* E [ 'J' ]

* F ]

* G

* H

* I

* J
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8.7 -  

In Chapter 4, we saw a simple database system, FlatDB, which supported the
combination of simpler queries into more complex ones:

query_or($dbh->query('STATE', 'NY'),

query_and($dbh->callbackquery(sub { my %F = @_; $F{OWES} > 100 }),

$dbh->query('STATE', 'MA')

))

I promised that we would attach this to a parser so that we could simply write
something like:

complex_query("STATE = 'NY' | OWES > 100 & STATE = 'MA'")

and get the same result. The lexer will turn this example into the following
tokens:

[FIELD, 'STATE']

[OP, '=']

[STRING, 'NY']

[OR]

[FIELD, 'OWES']

[OP, '>']

[NUMBER, 100]

[AND]

[FIELD, 'STATE']

[OP, '=']

[STRING, 'MA']

8.7.1 The Lexer

Here’s the lexer for our database query language. It has a few novel features:

use Lexer ':all';CODE LIBRARY
dqp.pl

sub lex_input {
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my @input = @_;

my $input = sub { shift @input };

my $lexer = iterator_to_stream(

make_lexer($input,

['STRING', qr/' (?: \\. | [ˆ'] )* '

|" (?: \\. | [ˆ"] )* " /sx,

sub { my $s = shift;

$s =˜ s/.//; $s =˜ s/.$//;

$s =˜ s/\\(.)/$1/g;

['STRING', $s] } ],

['FIELD', qr/[A-Z]+/ ],

['AND', qr/&/ ],

['OR', qr/\|/ ],

['OP', qr/[!<>=]=|[<>=]/,

sub { $_[0] =˜ s/ˆ=$/==/;

[ 'OP', $_[0] ] } ],

['LPAREN', qr/[(]/ ],

['RPAREN', qr/[)]/ ],

['NUMBER', qr/\d+ (?:\.\d*)? | \.\d+/x ],

['SPACE', qr/\s+/, sub { "" } ],

)

);

}

Most of this is old hat. The exception is the first rule, which recognizes string
constants, which have a fairly complicated lexical structure. First, we’ll look
at the regex, which is in two parts, one for single-quoted strings and one for
double-quoted strings. The two kinds of strings will have identical behavior in
this language; we’re including them both only to suit the preferences of users for
one or the other. The obvious regex to match a single-quoted string is /' .* '/x,
but a little thought shows this isn’t correct, since it will match 'O'Reilly', which
is syntactically incorrect. Really, the characters inside the quotes are forbidden to
be quotes themselves, so we want /' [ˆ']* '/x. But now there’s no way to write
a string that contains a single-quote character, so we introduce backslash escapes.
If a backslash appears inside a single-quoted string, the following character is
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accepted unconditionally, whether or not it’s a quote. The pattern becomes
/'(?: \\. | [ˆ'])* '/sx. (The /s tells the regex engine that it is acceptable
for the . character to match a newline; normally it won’t.) The corresponding
pattern for double-quoted strings is similar.

The default method for building a token from a quoted string isn’t exactly
what we want, because the input 'O\'Reilly' represents the string O'Reilly,
not O\'Reilly. So the STRING rule makes use of a feature we haven’t used much
yet, which is the option to specify a token-manufacturing function to replace the
default:

sub { my $s = shift;

$s =˜ s/.//; $s =˜ s/.$//;

$s =˜ s/\\(.)/$1/g;

['STRING', $s] }

The token-manufacturing function trims off the leading and trailing quotation
marks, and then expands the backslash escapes. If we wanted to support more
backslash escapes, such as \t for a tab character, this would be the place to do it:

sub { my $s = shift;

$s =˜ s/.//; $s =˜ s/.$//;

$s =˜ s/\\t/\t/g;

$s =˜ s/\\(.)/$1/g;

['STRING', $s] }

Note that once a STRING token comes out of the lexer, the parser won’t be
able to tell whether it was originally a single-quoted string or a double-quoted
string. Since the two kinds of strings have the same semantics, that’s just what
we want; there’s no reason for the parser to concern itself with this irrelevant
distinction.

This kind of behavior is typical of lexers. The lexer’s job is to convert the
incoming sequence of characters into meaningful tokens, and if two incom-
ing sequences have the same meaning, they should turn into the same tokens.
The Perl lexer does the same thing; by the time the parser gets hold of the
input:

$a = "O'Reilly";

it can’t tell that the input wasn’t originally:

$a = 'O\'Reilly';
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instead, or:

$a = qq{\x4f\47\x52\x65\151\x6c\x6c\171};

for that matter. Similarly, the Perl lexer absorbs the two keywords for and
foreach, which are identical, and grinds both of them down to identical
OPERATOR(FOR) tokens. By the time the parser gets the input, it doesn’t know
which one you wrote. We saw another example of this earlier, when the lexer for
our calculator treated /;\n*/ and /\n+/ as the same kind of token.

The only other lexer rule that’s a little different from those we’ve seen before
is OP, the rule for matching operators. An operator is one of the following:

!= <= >= ==

< > =

== and = are considered the same; we’re including both forms as a convenience for
the user. The token-manufacturing function transforms = to ==, again eliminating
a distinction that is of no concern to the parser.

8.7.2 The Parser

The grammar for the query language is simple, and doesn’t contain anything new:

complex_query → term star('OR' complex_query)

term → simple_query star('AND' term)

simple_query → 'FIELD' 'OP' 'STRING'

simple_query → 'FIELD' 'OP' 'NUMBER'

simple_query → 'LPAREN' complex_query 'RPAREN'

The code for complex_query and term is completely handled by the operator()

function we wrote in Section 8.4:

use Parser ':all';

use FlatDB_Composable qw(query_or query_and);

my ($cquery, $squery, $term);

my $CQuery = parser { $cquery->(@_ ) };

my $SQuery = parser { $squery->(@_ ) };

my $Term = parser { $term->(@_ ) };
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use FlatDB;

$cquery = operator($Term, [lookfor('OR'), \&query_or]);

$term = operator($SQuery, [lookfor('AND'), \&query_and]);

The code for simple_query() is more interesting, because it is the main interface
with the flat database library.

Recall that there are three productions for simple_query:

simple_query → 'FIELD' 'OP' 'STRING'

simple_query → 'FIELD' 'OP' 'NUMBER'

simple_query → 'LPAREN' complex_query 'RPAREN'

The third of these is just like several other parsers that we’ve seen before:

# This needs to be up here so that the following $squery

# definition can see $parser_dbh

my $parser_dbh;

sub set_parser_dbh { $parser_dbh = shift }

sub parser_dbh { $parser_dbh }

$squery = alternate(

T(concatenate(lookfor('LPAREN'),

$CQuery,

lookfor('RPAREN'),

),

sub { $_[1] }),

The first two are separate productions because they have different meanings.
"STATE = 'NY'" is quite different from "AMOUNT = 0", because the query()

method can be used for the first query but not for the second — recall that
query() always uses eq to detect matches. Because the FIELD OP NUMBER produc-
tion must always use callbackquery(), never query(), it’s a little simpler and
we’ll see it first:

T(concatenate(lookfor('FIELD'),

lookfor('OP'),

lookfor('NUMBER')),

sub {

my ($field, $op, $val) = @_;

my $cmp_code = 'sub { $_[0] OP $_[1] }';
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$cmp_code =˜ s/OP/$op/;

my $cmp = eval($cmp_code) or die;

my $cb = sub { my %F = @_;

$cmp->($F{$field}, $val)};

$parser_dbh->callbackquery($cb);

}),

The callback for the callback query is $cb. $cb sets up a hash %F that maps
field names to values, indexes %F to get the value of the appropriate field, and
compares the field value with the specified number $val. When $op is ==, the
comparison needs to be $F{$field} == $val; when $op is <=, the comparison
needs to be $F{$field} <= $val, and so on. There are essentially two ways to do
this. One way is to select a function that performs the comparison from a dispatch
table:

%compare = ('==' => sub { my %F = @_; $F{$field} == $val },

'<=' => sub { my %F = @_; $F{$field} <= $val },

'<' => sub { my %F = @_; $F{$field} < $val },

'>=' => sub { my %F = @_; $F{$field} >= $val },

'>' => sub { my %F = @_; $F{$field} > $val },

'!=' => sub { my %F = @_; $F{$field} != $val },

);

my $cb = $compare{$op};

This technique requires the construction of six anonymous functions, from which
we select one to use and discard the other five. The other technique is to generate
the desired code by textual substitution at run time; this is what the preceding
implementation does. The code for a comparison function is manufactured by
replacing OP in sub { $_[0] OP $_[1] } with the actual value of $op, and then
using eval to compile the resulting string. $cb then calls the resulting function
to actually compare the values. With the eval approach we run the risk of
accidentally generating syntactically incorrect code; building Perl code is always
fraught with peril because Perl’s syntax is so irregular. I chose the eval approach
because the peril seemed small in this case, because the code was smaller, and
because I didn’t like the idea of manufacturing six functions on every call just to
throw five of them away.3

3 One of the technical reviewers ridiculed me extensively for this decision, since the performance dif-
ference is negligible. But it wasn’t for performance reasons that I disliked the idea of manufacturing
six times as many functions as I needed. It was because I’m compulsive.
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The $parser_dbh variable in the final line is a bit of a puzzle. callbackquery()
is a method, that is called on a database handle object. In order to perform a
callbackquery(), the parser needs to know which database to query.

The cleanest way to accomplish this might be to provide each parser with a
user-parameter argument, which it would then pass to its sub-parsers. Then we
would supply the desired database handle to the top-level parser, and it would
percolate down to the T() function in simple_query(), which would use it as the
target object of the callbackquery() method. Unfortunately, this would require
redesigning all our parser-generation functions to accommodate a new argument
format. At present, the argument convention for alternate() and concatenate()

is utterly simple and straightforward: You just pass in the parsers you want to
alternate or concatenate. If a user-parameter argument were allowed, it would
have to be distinguished specially somehow. The alternate() and concatenate()

functions wouldn’t be able to recognize a user argument just by looking at it, the
way they recognized the debugging labels of Section 8.4, because a user argument
might have any value at all.

There’s an alternative that is preferable in this case. In Chapter 2, we saw how
to use user parameters to avoid having to communicate with callbacks via global
variables. Now we’re going to turn around and use a global variable anyway. But
our “global” variable, $parser_dbh, won’t be truly global. It will actually be a
lexical variable whose scope includes the parser-callback functions. To use the
parser, the caller will first set $parser_dbh, then invoke the top-level parser. To
avoid requiring that the caller also be in the scope of $parser_dbh, we’ll provide
a setter function that has access to it:

my $parser_dbh;

sub set_parser_dbh { $parser_dbh = shift }

sub parser_dbh { $parser_dbh }

$squery = alternate(...

... $parser_dbh->callbackquery($cb) ...

);

The big drawback of this approach is that the parser can’t change databases in
the middle of a parse without saving $parser_dbh before and restoring it after.
For our examples, this isn’t important, but it means that we can’t easily support
queries on more than one database at a time.

With all that out of the way, here’s the third production for simple_query:

T(concatenate(lookfor('FIELD'),

lookfor('OP'),
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lookfor('STRING')),

sub {

if ($_[1] eq '==') {

$parser_dbh->query($_[0], $_[2]);

} else {

my ($field, $op, $val) = @_;

my $cmp_code = 'sub { $_[0] OP $_[1] }';

$cmp_code =˜ s/OP/$string_version{$op}/;

my $cmp = eval($cmp_code) or die;

my $cb = sub { my %F = @_;

$cmp->($F{$field}, $val)};

$parser_dbh->callbackquery($cb);

}

}),

);

There are only two differences between this and the production for numeric
comparison. First, there’s a special case for when $op is ==. In this case, instead of
using the slower and more general callbackquery() to perform the query, we use
the simpler and faster query(), which is hardwired to do a string-equality test.
Second, in the other cases, when we do use callbackquery(), instead of replacing
OP with $op in the comparison function for the callback, we must replace OP with
the string version of $op— if $op is <=, the string version is le, and so on. String
versions are provided by a simple hash table:

my %string_version = ('>' => 'gt', '>=' => 'ge', '==' => 'eq',

'<' => 'lt', '<=' => 'le', '!=' => 'ne');

We need one last function to serve as an entry point from programs that want to
use our parser:

package FlatDB::Parser;

use base FlatDB_Composable;

sub parse_query {

my $self = shift;

my $query = shift;

my $lexer = main::lex_input($query);

my $old_parser_dbh = main::parser_dbh();

main::set_parser_dbh($self);

my ($result) = $cquery->($lexer);
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main::set_parser_dbh($old_parser_dbh);

return $result;

}

Our parser for database queries is now complete.

8.8  

The parser technique we’ve seen so far has a serious problem: It doesn’t always
work. Here’s a contrived but very simple example:

S → A B | B c c

A → a a | a

B → a b c | a b

Now consider the sentence a a b c. S will try the first alternative, A B. A will
try its first alternative, a a, which will succeed. Then B will try both of its
alternatives, each of which will fail, because they begin with a and the remaining
input is b c. B will report failure, and so A B will fail. S will then try its second
alternative, B c c, which will also fail, because the input doesn’t end with c c.

But the grammar does generate the string a a b c, by the derivation:

S

A B # S clause 1

a B # A clause 2

a a b c # B clause 1

Why didn’t the parser find the answer? The problem is that after the first alterna-
tive for A succeeded, the rest of the parse failed. The parser should have tried the
second alternative for A, since it would have led to success. But that’s not how
our alternate() function works. Once it commits to an alternative, it’s too late
for it to come back and try something else. The chosen alternative looked good
in the short term. alternate() had no way to find out that its choice turned out
bad in the long run, and that the parser called after it failed.

We’ve seen a number of useful parser examples already, and this problem
didn’t come up; often it doesn’t. But what do we need to do if it does come up?

The alternate() parser can’t assume success just because one or another
of its alternatives succeeds. It would need to find out if the following parsing
succeeded too. If so, then fine; if not, it would need to try another alternative.
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8.8.1 Continuations

How can alternate() find out if the rest of the parse succeeded? It would need to
invoke a parser for the entire rest of the input. We’ll pass it one in its argument list.

We’ll make each parser responsible for completing the entire parse. Parsers
formerly handled a bit of input and then returned. Now they’ll get an extra
argument, called a continuation, for parsing the rest of the input after the bit that
they’ve handled themselves. A parser will look for whatever it normally looks for,
and if it is successful, it will invoke the continuation on the rest of the input,
returning success if and only if the continuation succeeds.

In the preceding example, B is the continuation of A. A will try the first
alternative, a a, which will succeed. A will then try its continuation, B, on the
remaining input, b c; this will fail. So A will know that even though a a looked
good, it ultimately fails, and is incorrect. A will then try the second alternative,
a, which will also succeed, so A will try the continuation again, this time on the
remaining input a b c. B will succeed this time, so A will report success, having
selected the second alternative rather than the first.

With this structure, parsers no longer need to return the unused portion of
the input. Instead, they’ll pass the unused portion to the continuation. Formerly,
parsers got one argument, which was the input stream, and returned two results,
which were the calculated value and the remaining input stream. Parsers now
get two arguments, which are the input stream and the continuation, and return
one result, which is the calculated value.

Here’s the rewrite of alternate() to handle continuation arguments:

sub alternate { CODE LIBRARY
alternate-contmy @p = @_;

return parser { return () } if @p == 0;

return $p[0] if @p == 1;

my $p;

$p = parser {

my ($input, $continuation) = @_;

for (@p) {

if (my ($v) = $_->($input, $continuation)) {

return $v;

}

}

return; # Failure

};

$N{$p} = "(" . join(" | ", map $N{$_}, @p) . ")";

return $p;

}
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$p tries the alternatives (the elements of @p) in order. When one leads to a
complete successful parse, the resulting value is returned. If an alternative fails,
$p tries the next alternative.

Note that $p doesn’t have to invoke the continuation itself. It just passes the
continuation to the chosen alternative; the chosen alternative will take care of
invoking the continuation if it succeeds.

Who actually invokes the continuation? Parsers generated by lookfor()

invoke the continuation:

sub lookfor {CODE LIBRARY
lookfor-cont my $wanted = shift;

my $value = shift || sub { $_[0] };

my $u = shift;

$wanted = [$wanted] unless ref $wanted;

my $parser = parser {

my ($input, $continuation) = @_;

return unless defined $input;

my $next = head($input);

for my $i (0 .. $#$wanted) {

next unless defined $wanted->[$i];

return unless $wanted->[$i] eq $next->[$i];

}

my $wanted_value = $value->($next, $u);

# Try continuation

if (my ($v) = $continuation->(tail($input))) {

return $wanted_value;

} else {

return;

}

};

$N{$parser} = "[@$wanted]";

return $parser;

}

The process of checking the next token to see if it’s what was expected is exactly
the same, and, as before, if this fails, then the parser fails and returns false. But if
it succeeds, the lookfor() parser doesn’t immediately return success. Instead, it
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invokes the continuation to try to parse the rest of the input. It returns success
only if the continuation succeeds as well.

The null parser is still simple. It does nothing, passing the buck to the
continuation. If the continuation succeeds, nothing() is happy; if not, nothing()
reports the failure to its caller:

sub nothing { CODE LIBRARY
nothing-continuationmy ($input, $continuation) = @_;

return $continuation->($input);

}

The End_of_Input() parser doesn’t change at all. It doesn’t even get a continua-
tion, because there’s nothing left to do after End_of_Input() is finished. It just
checks to make sure that the input is exhausted, succeeding if it is.

concatenate() is a little trickier. Suppose we have:

S -> Z blah de blah

Z -> A B

Here Z is the concatenation of A and B; the continuation of Z is a parser for blah
de blah. What does Z do?

Clearly, the first thing it needs to do is to invoke the parser for A. But what
is the continuation for A? It’s B, followed by blah de blah. So the continuation
for A is a parser that invokes B with blah de blah as its continuation. The code
may make this clearer:

sub concatenate2 { CODE LIBRARY
concatenate2-cont

my ($A, $B) = @_;

my $p;

$p = parser {

my ($input, $continuation) = @_;

my ($aval, $bval);

my $BC = parser {

my ($newinput) = @_;

return unless ($bval) = $B->($newinput, $continuation);

};

$N{$BC} = "$N{$B} $N{$continuation}";

if (($aval) = $A->($input, $BC)) {

return ([$aval, $bval]);

} else {

return;
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}

};

$N{$p} = "$N{$A} $N{$B}";

return $p;

}

The parser for A B gets a continuation, which is a parser for blah de blah. It
builds a new parser, $BC, which invokes B, telling B that it is followed by blah de

blah. It then invokes A, giving it the continuation $BC. If both A and B succeed,
it packages the two values into an array and returns the array.

This concatenates only two parsers. To concatenate more than two, we call
concatenate2() repeatedly:

sub concatenate {CODE LIBRARY
concatenate-cont

my (@p) = @_;

return \&nothing if @p == 0;

my $p0 = shift @p;

return concatenate2($p0, concatenate(@p));

}

T() doesn’t change significantly. The parser it builds expects a continuation
argument, which it passes along:

sub T {CODE LIBRARY
T-continuation my ($parser, $transform) = @_;

my $p = sub {

my ($input, $continuation) = @_;

if (my $v = $parser->($input, $continuation)) {

$v = $transform->(@$v);

return $v;

} else {

return;

}

};

$N{$p} = $N{$parser};

return $p;

}

There’s one final detail: Where does the first continuation come from? This is
almost the simplest part of the whole operation. Say the top-level symbol is S.
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Like all parsers, the parser S expects two arguments: the upcoming input, and
the continuation parser. The upcoming input, of course, is the entire input. The
continuation of S is simply the End_of_Input() parser.

With these changes, the parser from the beginning of the section succeeds:

...

$S = alternate(concatenate($A, $B),

concatenate($B, lookfor('c'), lookfor('c')));

my $results = $S->($input, \&End_of_Input);

$results is assigned a value representing the correct parse, S → A B → a B →
a a b c.

8.8.2 Parse Streams

We introduced continuations to solve the problems caused by alternate(),
not really knowing whether an alternative has succeeded until the following
parsers reached the end of the input. Another way to solve the problem is to
change the parsers so that instead of returning a single result from the first parse
they find, they return all the results from all possible parses. Since this would
be a big waste of time in the event that the caller cared about only the first
parse, we would want to do it in a lazy fashion, returning a stream of possible
parses.

This solves the problem too, because in this model, alternate() returns a
stream that is the lazy merge of the streams returned by its arguments; if any of
these streams is empty, it is ignored. concatenate() is responsible for combining
two streams of parses into a stream of concatenations; if either input is empty,
so is the output. If the first argument to alternate() succeeds but some later-
concatenated part of the parsing process fails, that later part will return an empty
stream, the concatenation with the successful alternative will be empty, and
alternate() will effectively skip that alternative.

Before we see the changes to the parser constructors themselves, here are
some utility functions we’ll need. single() manufactures a stream of length 1,
with specified head and empty tail:

sub single {

my $v = shift;

node($v, undef);

}
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We saw union() before; it gets a list of streams, and produces a single stream
formed by appending the arguments end-to-end. sunion() is similar, except that
its argument is a stream of streams rather than a list of streams:

sub sunion {

my ($s) = @_;

my $cur_stream;

while ($s && ! $cur_stream) {

$cur_stream = head($s);

$s = tail ($s);

}

return undef unless $cur_stream;

return node(head($cur_stream),

promise { sunion(node(tail($cur_stream), $s)) }

);

}

Note that this is unsuitable if parsers might produce an infinite stream of possible
parses; if so, we’d need to use a different version of sunion() that mingled the
argument streams instead of appending them end-to-end.

lookfor() is the same as before, except that it returns an empty stream on
failure and a singleton stream on success:

sub lookfor {

...

my $parser = parser {

...

for my $i (0 .. $#$wanted) {

next unless defined $wanted->[$i];

unless ($wanted->[$i] eq $next->[$i]) {

return undef;

}

}

my $wanted_value = $value->($next, $u);

return single([$wanted_value, tail($input)]);

};

$N{$parser} = "[@$wanted]";

return $parser;

}
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Similarly, End_of_input() and nothing() return singleton streams when they
succeed:

sub End_of_Input {

my $input = shift;

defined($input) ? () : single(["EOI", undef]);

}

sub nothing {

my $input = shift;

return single([undef, $input]);

}

alternate() becomes much simpler; it’s merely a call to union() to join together
the streams returned by its argument parsers:

sub alternate {

my @p = @_;

return parser { return undef } if @p == 0;

return $p[0] if @p == 1;

my $p;

$p = parser {

my $input = shift;

union(map $_->($input), @p);

};

$N{$p} = "(" . join(" | ", map $N{$_}, @p) . ")";

return $p;

}

concatenate(), however, is trickier. To concatenate parsers S and T, we must
first call S on the main input, returning a stream of [$svalue, $input1] pairs.
We then call T on each of the $input1 values, producing a stream of [$tvalue,
$input2] pairs. The parser produced by concatenate() then produces a stream
of [[$svalue, $tvalue], $input2] pairs for each $tvalue and its corresponding
$svalue:

sub concatenate2 {

my ($S, $T) = @_;

my $p;
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$p = parser {

my $input = shift;

my $sparses = $S->($input);

sunion(transform {

my ($sv, $input1) = @{$_[0]};

my $tparses = $T->($input1);

transform {

my ($tv, $input2) = @{$_[0]};

[[$sv, $tv], $input2];

} $tparses;

} $sparses);

};

$N{$p} = "@N{$S, $T}";

return $p;

}

This concatenates only two parsers; to concatenate more than two, we repeat the
process as necessary:

sub concatenate {

my @p = @_;

return \&null if @p == 0;

my $p = shift @p;

return $p if @p == 0;

my $result = concatenate2($p, concatenate(@p));

$N{$result} = "@N{$p, @p}";

return $result;

}

Finally, T needs to be changed to apply its transformation function to each of the
values returned by its argument parser:

sub T {

my ($parser, $transform) = @_;

my $p = parser {

my $input = shift;

transform {

my ($v, $input1) = @{$_[0]};

[$transform->($v), $input1];
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} $parser->($input);

};

$N{$p} = $N{$parser};

return $p;

}

8.9 

The recursive-descent parsing system works well, and it’s easy to compose small
parsers into bigger ones and to capture common patterns in larger parser-
generating functions, such as operator() of Section 8.4.4. But the notation
looks awful. We can clean this up a little bit by using Perl’s operator-overloading
feature, introduced in Chapter 7.

The most frequently-used parser operators have been concatenate(),
alternate(), and T(). We’ll overload three operators to invoke these functions,
so that what we once wrote as:

$factor = alternate(lookfor('INT'),

T(

concatenate(lookfor(['OP', '(']),

$Expression,

lookfor(['OP', ')'])),

sub { $_[1] })

);

will become:

$factor = lookfor('INT')

| lookfor(['OP', '(']) - $Expression - lookfor(['OP', ')'])

>> sub { $_[1] }

;

which looks almost exactly like the grammar rules it represents. The - is used for
concatenation, the | is of course used for alternation, and the >> replaces T(),
because it visually suggests that the value from the parser on the left is being
passed into the function on the right. The precedences of these three operators
just happen to have the order we need: - has higher precedence than both | and
>>, so a | b - c >> d means a | ((b - c) >> d), which is almost always what
we want.
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The remaining syntactic clutter is mostly the calls to lookfor(). If we want
to trim this as well, it’s easy: just give lookfor() a shorter name:4

sub _ { @_ = [@_]; goto &lookfor }

$factor = _("INT")

| _('OP', '(') - $Expression - _('OP', ')')

>> sub { $_[1] }

;

To pull this off, we must engage the Perl overloading features by turning parsers
into objects blessed into a class that defines the operators. We’ll change the
formerly trivial parser() function to do that:

package Parser;

sub parser (&) { bless $_[0] => __PACKAGE__ }

We have the Parser class overload the relevant operators:

use overload '-' => \&concatenate2,

'|' => \&alternate2,

'>>' => \&T,

'""' => \&overload::StrVal,

;

I’ve used concatenate2() and alternate2() here just in case I someday want to
have a place to hang some extra semantics on the overloaded operators. In the
meantime, these binary functions just call their more general counterparts:

sub concatenate2 {

my ($A, $B) = @_;

concatenate($A, $B);

}

sub alternate2 {

my ($A, $B) = @_;

alternate($A, $B);

}

4 It would be nice to get rid of the parentheses as well, but we can’t, because _ $x - $ymeans _($x -

$y), rather than _($x) - $y as we’d like.
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The function associated with the "" (stringification) pseudo-operator is invoked by
Perl when a Parser object needs to be converted to a string. This occurs in debug-
ging messages and also whenever we use a parser as a key to the debugging names
in the %N hash. The function \&overload::StrVal restores the default behavior
of converting the Parser objects to strings of the form Parser=CODE(0x83bb36c).
An alternative would be to associate the stringification operator with a function
that looks up the parser’s name in the %N hash:

use overload '""' => \&parser_name;

sub parser_name {

my $parser = shift;

my $key = overload::StrVal($parser);

exists($N{$key}) ? $N{$key} : $key;

}

If we did this, we would never need to refer explicitly to %N in debugging messages;
just printing out a parser as if it were a string would print the name assigned to
it from the %N hash.

There are a few technical problems associated with the change. The
assignment:

$parser = $A - $B - $C

is not exactly equivalent to:

$parser = concatenate($A, $B, $C) ;

but rather to:

$parser = concatenate(concatenate($A, $B), $C) ;

If the values returned by $A, $B, and $C are a, b, and c, the first parser would have
returned [a, b, c], but the overloaded version will return [[a, b], c]. It might
seem that we could fix this by having concatenate() flatten its first argument.
But a little thought shows that this won’t work, because $A - $B would try to
flatten a, which would be an error. And concatenate() can’t have a policy of
flattening its first argument whenever the first argument is an array reference,
because $A might actually return a legitimate array reference value.

Probably the best way to handle this is to leave concatenate() mostly alone
and let it return values like [[[a, b], c], d]. Almost all compound values
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returned by concatenate() are passed through T() anyway, so we’ll let T() take
care of undoing the nesting of the values. But we need some way to signal to
T() the difference between a value returned by $A - $B - $C, where [[a, b],

c] needs to be flattened to [a, b, c], and the same value returned by $A - $C,
where $A happened to return an array reference [a, b], which doesn’t need to be
flattened. A solution is to tag the pairs returned by concatenate so that T() can
recognize them. Instead of:

for (@p) {

($v, $input) = $_->($input);

push @values, $v;

}

return (\@values, $input);

we have:

for (@p) {

($v, $input) = $_->($input);

push @values, $v;

}

return (bless(\@values => 'Pair'), $input);

We must also add code to T() to recognize and flatten lists of these special Pair
objects:

my ($value, $newinput) = $parser->($input);

# Flatten nested lists returned by concatenate()

my @values;

while (ref($value) eq 'Pair') {

unshift @values, $value->[1];

$value = $value->[0];

}

unshift @values, $value;

$value = $transform->(@values);

return ($value, $newinput);

Only a few other changes need to be made. Expressions like:

T(\&nothing, sub { 1 })

don’t translate as they should. The corresponding expression,

\&nothing >> sub { 1 }
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doesn’t work, because \&nothing is not an overloaded Parser object. (It hasn’t
been blessed.) The solution is simple; instead of using \&nothing directly, provide
a blessed version:

bless($nothing = \&nothing, "Parser");

$N{$nothing} = "(nothing)";

and then use $nothing instead of \&nothing:

$nothing >> sub { 1 }

With the new syntax, the parser for the final calculator example of Section 8.4.6
becomes:

$program = star($Statement) - $Parser::End_of_Input;

$statement = _("PRINT") - $Expression - _("TERMINATOR")

>> sub { print ">> $_[1]\n" }

| _("IDENTIFIER") - _('OP', '=')

- $Expression - _("TERMINATOR")

>> sub { $VAR{$_[0]} = $_[2] };

$expression = $Term - star(_('OP', '+') - $Term

>> sub { my $term = $_[1];

sub { $_[0] + $term } }

|

_('OP', '-') - $Term

>> sub { my $term = $_[1];

sub { $_[0] - $term } }

)

>> sub { my ($first, $rest) = @_;

for my $f (@$rest) {

$first = $f->($first);

}

$first;

};

$term = $Factor - star(_('OP', '*') - $Factor
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>> sub { my $factor = $_[1];

sub { $_[0] * $factor } }

|

_('OP', '/') - $Factor

>> sub { my $factor = $_[1];

sub { $_[0] / $factor } }

)

>> sub { my ($first, $rest) = @_;

for my $f (@$rest) {

$first = $f->($first);

}

$first;

};

$factor = $Base - (

_('OP', '**') - $Factor >> sub { $_[1] }

|

$Parser::null >> sub { 1 }

)

>> sub { $_[0] ** $_[1] };

$base = _("INT")

| lookfor('IDENTIFIER', sub { $VAR{$_[0][1]} })

| _('OP', '(') - $Expression - _('OP', ')')

>> sub { $_[1] }

;

The overloaded version is substantially less bulky and much easier to read.


