
 5

We’ve already seen that iterators are useful when a source of data is prepared to
deliver more data than we want, or when it takes a long time to come up with
each data item and we don’t want to waste time by computing more of them
than we need to.

Both conditions occur frequently in conjunction with recursive functions.
Recursive functions are often used for searching large, hierarchical spaces for
solutions to some specification. If solutions are common, the space will contain
more of them than we want to use; if solutions are rare, they will take a long time
to find. In either case, we don’t want our program to have to populate an array
with all the possible solutions before it can continue, and it is natural to use an
iterator.

We saw another reason to get rid of recursion in the web robot example in
Chapter 4: Recursive functions naturally perform depth-first searches. When this
is inappropriate, as for a web robot, recursion offers no escape. With an iterator
solution, we can order the queue any way we like or even reorder it dynamically
when new information arrives.

But recursive functions are often easy to write, whereas iterators seemed
to require ingenuity. In this chapter, we’ll look at techniques for transforming
general recursive functions into iterators.

203

204 From Recursion to Iterators

5.1

As our prototypical example of such a problem, we’re going to look at the partition
problem, which we saw in Chapters 1 and 3. This is a simple but common problem
that arises in many contexts, most commonly in optimization and operations
research problems.

Recall that in the partition problem, we are given a list of treasures, each with
a known value, and a target value, which represents the share of the treasures that
we are trying to allocate to someone whom we will call the wizard. The question
is whether there is any collection of treasures that will add up to the wizard’s
share exactly, and if so, which treasures?

One runs into this problem and closely related problems everywhere. For
example, I once was talking to Jonathan Hoefler, owner of the Hoefler Type
Foundry. Hoefler needed to produce type samples for his catalog. For each font,
he needed to find an English word or phrase that would fit in a column exactly
3.25 inches wide. He had a dictionary, and could compute a table of the length
of each word. For large font sizes, this was enough, because a single word such
as “Hieroglyph” or “Cherrypickers” at 48- or 42-point size (respectively) would
exactly fill the column; solving the problem for large sizes is a simple matter of
scanning the table for the single word closest in size to 3.25 inches. But the same
column must accommodate fonts of all sizes, from large to small, and there is no
word that is 3.25 inches wide when set in 20-point type. Several words have to
be put together to add up to the required length. For 20-point type, the example
is “The Defenestration of Prague.”1 (See Figure 5.1.)

In regular text, the typesetter will expand the spaces between words slightly
to take up extra space when needed, or will press the words more closely together.
In ordinary typesetting, this is acceptable. But in a font specimen catalog, the
font designer wants everything to look perfect, and the spacing has to be just so.
The designer wants to pick text, which, when spaced in the most natural way,
happens to fill the column as exactly as possible.

The problem of finding words to fit as perfectly as possible into the space in a
font specimen catalog is very similar to the partition problem we saw in Chapter 3.
The differences are that some allowance has to be made in the programming to
handle appropriate inter-word space that follows every word but the last, that

1 Stay away from the windows if you’re ever in Prague; the city is famous for its defenestrations.
Probably the most important was on 23 March, 1618, when Bohemian nobles flung two impe-
rial governors out the window into a ditch, touching off the Thirty Years’ War. Other notable
defenestrations have occurred in 1419 and 1948.

 . A page from Hoefler’s type specimen catalog.

206 From Recursion to Iterators

words may be re-used, and that it is permissible to miss the target value by a
small amount.

Another related problem is how to back up your files from your hard disk
onto floppy diskettes, using as few diskettes as possible. It is not permitted to
split any file across two or more diskettes. This problem was intensely interesting
to me in 1986, because the file backup program for my Macintosh did have just
these restrictions, and as a penurious college student, I couldn’t afford to buy lots
of diskettes.

We’ve seen the code for a recursive version of this problem already. It looks
like this:

sub find_share {

my ($target, $treasures) = @_;

return [] if $target == 0;

return if $target < 0 || @$treasures == 0;

my ($first, @rest) = @$treasures;

my $solution = find_share($target-$first, \@rest);

return [$first, @$solution] if $solution;

return find_share($target , \@rest);

}

This function returns an array of treasures that add up to the target sum, if there
is such a solution, and undef if there is no solution.

5.1.1 Finding All Possible Partitions

We could easily modify it to return all possible solutions, instead of only one:

sub partition {CODE LIBRARY
partition-all my ($target, $treasures) = @_;

return [] if $target == 0;

return () if $target < 0 || @$treasures == 0;

my ($first, @rest) = @$treasures;

my @solutions = partition($target-$first, \@rest);

return ((map {[$first, @$_]} @solutions),

partition($target, \@rest));

}

Why might we want to do such a thing? Suppose we’re trying to allocate shares
to several people, say a wizard, a barbarian, and a plumber, out of the same pool

. 207

of treasure. First we allocate the wizard’s share. There might be several ways to
do this, so we choose one. Next we want to allocate the barbarian’s share, but we
find that there’s no way to do this. It might be that if we had allocated the wizard’s
share differently, we wouldn’t have gotten into trouble over the barbarian’s share
later. When we find out that we can’t allocate the barbarian’s share correctly, we
want to backtrack and try the wizard’s share in a different way.

Here’s a particularly simple example: Suppose that there are four treasures
worth 1, 2, 3, and 4. The wizard is owed treasures worth 5 gold pieces, and
the barbarian is owed 3. If we give treasures 2 and 3 to the wizard, we foreclose
the only possible solutions for the barbarian. We need to backtrack and try a
different distribution of treasures; in this case we should give treasures 1 and 4
to the wizard, and treasure 3 to the barbarian. (The plumber works for union
scale and is paid by the hour.)

The preceding partition function delivers all possible shares for the wizard;
so if we try [2,3] and discover that this causes problems later for the barbarian,
we can backtrack and try the other solution, [1,4], instead.

But this function has a serious problem that we might have foreseen: Even
simple instances of the partition problem often have many different solutions. For
example, the call partition(105, [1..20]) generates 15,272 solutions. Since
we probably won’t need to find all these solutions, we would like to convert this
function to an iterator.

In Chapter 4, we saw a technique for doing this. It involved replacing the
implicit recursion stack with an explicit queue, and appeared to require ingenuity.
But it turns out that this technique always works, and doesn’t require much
ingenuity at all.

This tactic for turning a recursive function into an iterator is to have the iter-
ator retain an agenda2 or to-do list of partially-complete partition attempts that it
has not yet investigated. Each time we invoke the iterator, it will remove an item
from the to-do list and investigate it. If the item represents a solution to the prob-
lem, the iterator will return it immediately. If the item requires further investiga-
tion, the iterator will investigate it a little further, possibly producing some new
partially-investigated items, which it will put onto the to-do list be investigated
later, and will continue to look through the agenda for solutions. If the agenda
is exhausted before a solution is found, the iterator will report failure. Since the
agenda is part of the iterator’s state, the iterator can return a solution to its caller,
and the agenda state will remain intact until the next time the iterator is called.

We saw several examples of this approach, including the web spider, in
Chapter 4.

2 Agenda is the Latin word for “to-do list.”

208 From Recursion to Iterators

For this problem, each item in the queue must contain the following
information:

• A current target sum

• The pool of treasures still available for use

• The share containing the treasures already allocated toward the target

In general, with this technique, each agenda item must contain all the informa-
tion that would have been passed as arguments to the recursive version of the
function.

sub make_partitioner {CODE LIBRARY
partition-it my ($n, $treasures) = @_;

my @todo = [$n, $treasures, []];

Initially, the queue contains only one item that the iterator must investigate: The
target sum is $n, the number originally supplied by the user; the pool contains
all the treasures; the share is empty. The iterator will move treasures from the
pool to the share, deducting their values from the target, until the target is
zero.

sub {

while (@todo) {

my $cur = pop @todo;

my ($target, $pool, $share) = @$cur;

Here the iterator extracts the tail item from the agenda. This is the “current” item
that it must investigate. The iterator extracts the target sum, the available pool
of treasures, and the list of treasures already allocated to the share. The presence
of this item in the to-do list indicates that if some subset of the treasures in $pool

can be made to add up to $target, then those treasures, plus the ones in $share,
constitute a solution to the original problem.

The iterator can return under two circumstances. If it finds that the cur-
rent item represents a solution, it will return the solution immediately. But if
the agenda is exhausted before this occurs, then there is nothing left to inves-
tigate, there are no more solutions, and the iterator will immediately return
failure.

if ($target == 0) { return $share }

. 209

If the target sum is zero, the current share is already a winner. The iterator returns
it immediately. Any items that are still uninvestigated remain on the to-do list,
awaiting the next call to the iterator.

next if $target < 0 || @$pool == 0;

On the other hand, if the target is negative, the current item is hopeless, and the
iterator should immediately discard it and investigate another item; similarly if
the pool of treasures in the current item has been exhausted. The next restarts
the while loop from the top, which begins by extracting a new current item
from the agenda.

With these simple cases out of the way, the bulk of the code follows:

my ($first, @rest) = @$pool;

push @todo, [$target-$first, \@rest, [@$share, $first]],

[$target , \@rest, $share];

}

In the typical case, the current item has two sub-items that must be investigated
separately: Either the first treasure in the pool is included in the share, and the
target is smaller, or it isn’t included, and the target is the same. For example, to
satisfy (28, [10,18,27], [1]) we can either investigate (18, [18,27], [1,10])

or we can investigate (28, [18,27], [1]).
The iterator appends the two new items to the end of the queue and returns

to the top of the while loop to investigate another item.

return undef;

} # end of anonymous iterator function

} # end of make_partitioner

If the to-do list is exhausted, the while loop exits, and the iterator returns undef
to indicate failure.

5.1.2 Optimizations

There are a few obvious ways to improve the preceding code. Suppose the current
item is [12, [12, ...], [...]]. The function then constructs two new items,
[0, [...], [..., 12]] and [12, [...], [...]], and pushes them onto the
end of the to-do list. But the first item is obviously a solution (because its target

210 From Recursion to Iterators

sum is 0), so there’s no point in putting it on the end of the queue and working
through every other item on the queue looking for a different solution; clearly
we should return it right away.

Similarly, if the function constructs an item that is obviously useless, it could
throw it away immediately rather than putting it on the queue to be thrown away
later:

sub make_partitioner {CODE LIBRARY
partition-it-opt my ($n, $treasures) = @_;

my @todo = [$n, $treasures, []];

sub {

while (@todo) {

my $cur = pop @todo;

my ($target, $pool, $share) = @$cur;

if ($target == 0) { return $share }

next if $target < 0 || @$pool == 0;

my ($first, @rest) = @$pool;

push @todo, [$target, \@rest, $share] if @rest;

if ($target == $first) {

return [@$share, $first];

} elsif ($target > $first && @rest) {

push @todo, [$target-$first, \@rest, [@$share, $first]],

}

}

return undef;

} # end of anonymous iterator function

} # end of make_partitioner

The first new line here appends to the queue what was previously the second new
item. But here it’s conditionalized: The item is placed on the queue only if its
treasure pool will still contain an unused item. If its pool is empty, then it can’t
possibly result in a solution, so the function discards it immediately.

The following if-elsif block handles what was previously the first new
item. The function is about to put the first treasure into the share and to sub-
tract its size from the target sum. But unlike the previous version of the code,
here it puts the new item on the queue only if the size of the first treasure is
smaller than the target sum. If the first treasure is equal to the target sum, then
the item it is about to put on the queue is actually a solution to the prob-
lem, so the iterator returns it immediately instead of queuing it. Conversely, if

. 211

the first treasure is larger than the target sum, then the item the iterator was
about to queue would have had a negative target sum, and would have been
discarded the next time it was encountered; instead, the iterator never puts it in
the queue at all. The && @rest condition makes sure the iterator doesn’t queue
an item with a positive target sum and an empty pool, which is guaranteed
to fail.

It’s tempting to remove the:

if ($target == 0) { return $share }

next if $target < 0 || @$pool == 0;

lines now. They’re much less useful, since the cases they check for are all detected
at the bottom of the loop, and items that have $target <= 0 or @$pool == 0

aren’t put into the queue to begin with. The only cases they do catch are
when such items are placed directly into the queue by the caller of
make_partitioner.

There are at least three ways we can deal with this. We can leave the
checks in place. We can remove the checks and document the resulting defi-
ciency in the function: If the initial value of $n is 0, the iterator fails to
report the empty solution. (Even with the extra checks, the function has a
few boundary condition errors of this type. For example, it reports only three
of the eight possible solutions to make_partitioner(0, [0,0,0]).) Or we can
remove the checks and add preprocessing code that works around the bug. For
example:

sub make_partitioner {

my ($n, $treasures) = @_;

my @todo = $n ? [$n, $treasures, []] : [$n, [], []];

sub {

...

}

}

If make_partitioner sees that we’re about to exercise the bug, which occurs only
for n = 0 and a nonempty treasure pool, it silently adjusts the pool behind the
scenes to a case that will produce the correct answer.

These three tactics are presented in increasing order of “cleverness.” Such
cleverness should be used only when necessary, since it requires a corresponding
application of cleverness on the part of the maintenance programmer eight weeks
later, and such cleverness may not be available.

212 From Recursion to Iterators

5.1.3 Variations

The space searched by this function is organized like a tree:

6
[2346]

[]

4
[346]
[2]

1
[46]
[23]

4
[46]
[2]

-3
[6]

[234]

-5
[]

[236]

1
[]
[23]

-2
[]
[26]

-3
[]
[36]

3
[]
[3]

-4
[]
[46]

2
[]
[4]

0
[]
[6]

6
[]
[]

1
[6]
[23]

-1
[6]
[34]

4
[6]
[2]

3
[6]
[3]

2
[6]
[4]

6
[6]
[]

4
[]
[2]

0
[6]
[24]

3
[46]
[3]

6
[46]
[]

6
[346]
[]

Each node of this tree represents one of the items that the partitioner inves-
tigates, showing the target sum, the pool, and the share so far. For example,
the root node represents an item with a target sum of 6, a pool containing 2,
3, 4, and 6, and an empty share. The root node is the item that the user of
make_partitioner first inserted into the to-do list. Each node has two child
nodes, which are the two derived items: one moves the first treasure from pool
to share and subtracts it from the target sum, and the other removes the first
treasure from the pool and discards it without changing the share or the target
sum. The leaf nodes are those from which no further searching is done, because
the pool is empty (bottom row) or the target sum is too small.

The partitioner always searches a node before searching its children, so it
searches the tree in a generally top-to-bottom order. In fact, the version we saw
first searches the nodes in depth-first order, visiting the root node, then the nodes
down the leftmost branch, then the three nodes just to the right of the leftmost
branch, and so on.

The second version of the partitioner saves time by refusing to investigate
items that it sees will be leaves, effectively searching the smaller tree of Figure 5.2
instead.

. 213

6
[2346]

[]

4
[346]
[2]

1
[46]
[23]

4
[46]
[2]

0
[]
[6]

1
[6]
[23]

4
[6]
[2]

3
[6]
[3]

2
[6]
[4]

6
[6]
[]

0
[6]
[24]

3
[46]
[3]

6
[46]
[]

6
[346]
[]

 . The search space of partition(6, [2,3,4,6]), pruned.

Whether to choose breadth- or depth-first search depends on the nature of
the problem. Each has major contraindications. Depth-first search (DFS) tends to
yield shorter to-do lists. In any depth-first search of a tree, if each node in the tree
has no more than n children, and the depth of the tree is d nodes, then the to-do
list will contain at most (n − 1)(d − 1) + 1 items at any time. For the partition
problem, n is 2, and d is no more than the number of items in the original
pool. So in depth-first search, the to-do list will never exceed the size of the
original pool.

In contrast, breadth-first search (BFS) can sometimes lead to enormous to-do
lists. The tree is searched top-down, and if all the solutions are in the leaves, each
interior tree node must be put on the to-do list and taken off again before the
search reaches the leaves where the solutions are. In the unpruned partition search
example, shown on page 212, breadth-first search starts with the root node on
the agenda, then removes it and replaces it with the two second-level nodes, then
removes these and replaces them with the four third-level nodes, then replaces
these with the eight fourth-level nodes. These are eventually replaced with the ten
fifth-level nodes; if the problem had been bigger, there would have been sixteen
fifth-level nodes instead of only ten. Breadth-first search may be contraindicated
when the tree branches rapidly or when the solutions are all to be found among
the leaves. Depth-first search, which dives straight down to where the solutions
are, may be a better choice.

214 From Recursion to Iterators

For some applications, however, depth-first search is a loser. Web spidering
is one of these. I was once teaching a class in which one of the students decided to
write a web spider. The central control of his program was a recursive function,
something like this:

sub handle_page {

my $url = shift;

get the document from the network;

if (the document is HTML) {

parse it;

extract the links;

for (links) {

handle_page($_);

}

}

}

Because the function was recursive, it naturally did a depth-first search on the
web space. The result was completely useless. The spider started by reading the
initial page and making a list of all the links from that first page. Then it followed
the first link on the first page and made a list of all the links on the second page.
Then it followed the first link on the second to a third page and made a list
of all the links on that page, and so on. The spider went dashing off toward
the horizon, never to return, except perhaps by accident. Clearly this wasn’t
particularly useful. This is the major contraindication for depth-first search: a
very large, or infinite search space.

To see a particularly simple example of this, consider a search for strings of
the letters A, B, and C that read the same forwards as backwards (see Figure 5.3).
We might imagine a search of the space of all strings.

""

"A"

"AA"

"AAA" "AAB" "AAC" "ABA" "ABB" "ABC"

"AB" "AC" "BA" "BB" "BC" "CA" "CB" "CC"

"B" "C"

… …

…

… … … … …

… … … … …

 . Searching for palindromes in the space of all strings.

. 215

Breadth-first search eventually finds all the desired strings, in order by length:
"", "A", "B", "C", "AA", "BB", "CC", "AAA", "ABA", "ACA", "BAB",

Depth-first search, however, goes diving down the leftmost branch, find-
ing "", "A", "AA", "AAA", "AAAA"... and never even looking at any branches
that contain Bs or Cs.

5.2

We’ve seen several such techniques, including the odometer method and the
agenda method. It appears that these took some ingenuity to find. What if
they don’t happen to work for a particular function, and you don’t have enough
ingenuity that day to find something that does work?

It turns out that that won’t happen, because the agenda method always works.
This is because we can consider every recursive function to be doing a tree search!

Ordinary function call semantics create a notional tree of function calls.
Imagine that we have a node for each time a function is called, and node A is the
parent node of B when the function invocation represented by A is responsible
for invoking the function represented by B. The root node is the main program,
which is started by some agency outside of the program itself. A simple program
like this:

#!/usr/bin/perl

$data = read_the_input();

$result = process_the_data($data);

print_the_output($result);

evolves the simple tree depicted below. Such a tree is called a call tree:

(main program)

read input process data print output

It’s important to realize that the call tree has one tree node not for each
subroutine, but for each invocation of each subroutine (see Figure 5.4).

sub read_input {

for (1..8) {

216 From Recursion to Iterators

read_input

read_block(1) read_block(2)

read_addendum read_addendum

read_block(3) read_block(8)…

 . A more complicated call tree.

read_block($_);

}

...

}

sub read_block {

my $n = shift;

if ($n % 2 == 0) { read_addendum() }

...

}

sub read_addendum { ... }

In the call tree for a recursive function, the node for a subroutine may have
children that represent calls to the same subroutine. For a recursive directory
tree walker like walk_tree, the call tree is exactly the same as the directory tree
itself. Figure 5.5 shows a more arbitrary example.

sub rec {

my ($n, $k) = @_;

print $k x $n, "\n";

for (1 .. $n-1) {

rec($n-$_, $_);

}

}

rec(4,1) 1111

rec(3,1) 111 rec(2,2) 22 rec(1,3) 3

rec(2,1) 11 rec(1,2) 2 rec(1,1) 1

rec(1,1) 1

 . A call tree for a recursive function.

. 217

When a recursive function runs, we can imagine that it is performing a depth-
first tree search on its own call tree. It starts at the root, which represents the
initial invocation of the function. Each time the function calls itself, it is moving
down the tree to a child node; when the call returns, it moves back up the parent.
When run, the preceding code example does indeed produce the data from the
tree nodes of Figure 5.5 in depth-first order:

1111

111

11

1

2

22

1

3

As a result, every recursive function is really doing a depth-first tree search.
Whenever we want to convert a recursive function to an iterator, we can use the
agenda method. Each agenda item will represent one call to the recursive function
and will contain all the state information that the recursive function needed to
do its work: in general, all its private variables, but often, just the arguments.
When the iterator removes an item from the agenda, it starts pretending that it’s
the recursive function, with the arguments described by the item it removed. If
the recursive function would have called itself recursively, the iterator puts an
item onto the agenda to represent the new arguments.

Let’s look at a new example to see how this works. Some time ago, a friend,
Jeff Goff, was working on a game and asked how to write a function that would
take a positive integer n and produce a list of all the different ways it could be
split into smaller integers. For example, if n = 6, the desired list is:

6
5 1
4 2
4 1 1
3 3
3 2 1
3 1 1 1
2 2 2
2 2 1 1
2 1 1 1 1
1 1 1 1 1 1

218 From Recursion to Iterators

Rather confusingly, this is called the partitions of an integer problem, and each of
the rows in the table is a partition of the number 6.

First we have to suppose we have a recursive function that solves this problem.
The function will take a number and split a chunk off it. For example, it might
split 5 into 4 + 1 or 6 into 3 + 3. It will do this in every possible way. Then it
will recurse, and split another chunk off the remainder, and so on:

sub partition {CODE LIBRARY
partition-repeats print "@_\n";

my ($n, @parts) = @_;

for (1 .. $n-1) {

partition($n-$_, $_, @parts);

}

}

This isn’t quite what we want, because it generates some of the partitions more
than once. For example, if we start with 6, and split off 2 and then 3, we get 1 +
3 + 2; if we split off 3 first and then 2, we get 1 + 2 + 3, which is the same. The
preceding function generates 32 partitions of 6, including 3 + 1 + 1 + 1, 1 +
3 + 1 + 1, 1 + 1 + 3 + 1, and 1 + 1 + 1 + 3, but there are only 11 different
partitions.

The trick for eliminating extra items in a listing like this is to adopt a canonical
form for the output. Where there are several items that are essentially the same, a
canonical form is just a convention about which item you’ll choose to represent
all of them.

This idea should be familiar. Suppose we wanted to read a list of words, and
report on the ones that appeared more than once. Easy; just use a hash:

for (@words) { $seen{$_}++ }

@repeats = grep $seen{$_} > 1, keys %seen;

But what if the words are in mixed-case, and the case doesn’t matter, so that we
want to consider “perl”, “Perl”, and “PERL” as being the same? There’s only one
easy way to do it: Use a hash, and store the all-lowercase version of the codes:

for (@words) { $seen{lc $_}++ }

@repeats = grep $seen{$_} > 1, keys %seen;

The all-lowercase version is the canonical form for the words. Words are divided
into groups of equivalent words, sometimes called equivalence classes, and a
representative is chosen from each group. For the group of equivalent words

. 219

containing:

perl Perl pErl peRl
perL PErl PeRl PerL
pERl pErL peRL PERl
PErL PeRL pERL PERL

we choose “perl” as the canonical representative. Choosing the all-uppercase
member of each group would work as well, of course, as would any other
method that chooses exactly one representative from every equivalence class.
Another familiar example is numerals: We might consider the numerals
“0032.50,” “32.5,” and “325e-01” to be equivalent; when Perl converts these
strings to an internal floating-point format, it is converting them to a canonical
representation so that equivalent numerals have the same representation.

Returning to our problem of duplicate partitions, it appears that one solu-
tion will be to find a canonical form for partitions, and then discard any
partitions that aren’t already in canonical form. Sometimes it can be difficult
to find an appropriate canonical form. But not in the case of the partition
problem. The partitions are lists of numbers, and since every list has one and
only one sorted version, we’ll just say that the sorted version of the list is its
canonical form.

We will produce partitions whose elements are in decreasing order, and no
others. (We’ll say “decreasing” when what we really mean is “nonincreasing,” so
we say that 5, 5, 4, 3, 3 is a “decreasing” sequence of numbers. This is more
convenient than using the clumsy word “nonincreasing” everywhere.3)

We could refit our subroutine to suppress the printing for the elements that
aren’t in decreasing order:

sub partition {

print "@_\n" if decreasing_order(@_);

my ($n, @parts) = @_;

for (1 .. $n-1) {

partition($n-$_, $_, @parts);

}

}

However, it’s more efficient to avoid generating noncanonical partitions in the
first place. To generate only those partitions whose members are in decreasing

3 If anyone complains about this abuse of terminology, I will just point out that Edsger Dijkstra, a
computer scientist famous for precision, did the same thing. See page 3 of An Introductory Example,
http://www.cs.utexas.edu/users/EWD/ewd10xx/EWD1063.PDF.

220 From Recursion to Iterators

order, we just have to take care not to split off any parts that are smaller than a
part we have already split off:

sub partition {CODE LIBRARY
partition print "@_\n";

my ($largest, @rest) = @_;

my $min = $rest[0] || 1;

my $max = int($largest/2);

for ($min .. $max) {

partition($largest-$_, $_, @rest);

}

}

Here instead of splitting off parts with any size at all between 1 and $n-1, we
put conditions on the size of the parts we can split off. We know that the
arguments to the function are in decreasing order, so that the first argument is
the largest part, the next is the next largest (if it exists), and the rest (if there are
any) are no bigger than these two. We don’t want to split off a part that is smaller
than one we split off before, so it is sufficient to make sure the split-off part is at
least as large as $rest[0], if it exists; if not, we haven’t split anything off yet, so
it’s okay to split off any amount down to and including 1.

The split-off value must not be larger than half the largest element, or else
the part left over after it is subtracted will be smaller than the part that was
split off: we would go from partition(5,2) to partition(2,3,2), and then the
arguments wouldn’t be in decreasing order.

Figure 5.6 shows the call tree for the invocation partition(7).

(7)

(5,2)

(3,2,2)(4,2,1) (3,3,1)(5,1,1)

(4,1,1,1)

(3,1,1,1,1) (2,2,1,1,1)

(2,1,1,1,1,1)

(1,1,1,1,1,1,1)

(3,2,1,1) (2,2,2,1)

(4,3)(6,1)

 . Partitions of the integer 7, organized as a search space.

. 221

The large left branch contains all the partitions that include a part of size 1.
The much smaller second branch contains just the partitions whose parts are all
at least 2. The third branch contains the single partition, (4, 3), whose parts are
all at least 3.

Incidentally, it’s quite easy to change the function to solve the slightly dif-
ferent problem of producing the partitions where the parts are all different: Just
change $rest[0] to $rest[0]+1 and $largest to ($largest-1).

The function works just fine, producing each partition exactly once, and
every partition in decreasing order, so now we’ll try to turn it into an iterator.

To do this, we need to identify the state that the function tracks during each
invocation. We’ll then package up each state into an agenda item. In general, the
state might include all of the function’s lexical variables, and it has four: @rest,
$largest, $min, and $max:

sub make_partition { CODE LIBRARY
partition-it-2my $n = shift;

my @agenda = ([$n, # $largest

[], # \@rest

1, # $min

int($n/2), # $max

]);

return Iterator {

while (@agenda) {

my $item = pop @agenda;

my ($largest, $rest, $min, $max) = @$item;

for ($min .. $max) {

push @agenda, [$largest - $_, # $largest

[$_, @$rest], # \@rest

$_, # $min

int(($largest - $_)/2), # $max

];

}

return [$largest, @$rest];

}

return;

};

}

The code here has a strong resemblance to the original recursive function. We can
see the int($largest/2) and the for ($min .. $max) loop lurking inside. But
it’s rather clumsy. The iterator we’ve just constructed is more closely analogous

222 From Recursion to Iterators

to a different version of the recursive function, one that passes all four quantities
as arguments:

sub partition {

my ($largest, $rest, $min, $max) = @_;

for ($min .. $max) {

partition($largest-$_, [$_, @$rest], $_, int(($largest - $_)/2));

}

return [$largest, @$rest];

}

This does work, but it’s not how we did it originally. Instead, we derived $min and
$max from $largest and $rest, and these in turn were derived from @_, which is
the true state of the recursive function. Realizing this leads us to a simpler iterator:

sub make_partition {CODE LIBRARY
make-partition-1 my $n = shift;

my @agenda = [$n];

return Iterator {

while (@agenda) {

my $item = pop @agenda;

my ($largest, @rest) = @$item;

my $min = $rest[0] || 1;

my $max = int($largest/2);

for ($min .. $max) {

push @agenda, [$largest-$_, $_, @rest];

}

return $item;

}

return;

};

}

The code here is quite similar to that of the original function.
Now that we have an iterator, we can play around with it. There’s no point to

the while loop, because it executes at most once, and a while loop that executes
at most once is just an if in disguise:

sub make_partition {CODE LIBRARY
make-partition-2 my $n = shift;

my @agenda = [$n];

return Iterator {

return unless @agenda;

. 223

my $item = pop @agenda;

my ($largest, @rest) = @$item;

my $min = $rest[0] || 1;

my $max = int($largest/2);

for ($min .. $max) {

push @agenda, [$largest-$_, $_, @rest];

}

return $item;

};

}

Because we return each partition immediately, after putting its children onto
the agenda, old nodes are never preempted by new ones, regardless of whether
we use pop or shift. Consequently this iterator always produces partitions in
breadth-first order. The output lists the partitions in increasing order of number
of elements:

6
5 1
4 2
3 3
4 1 1
3 2 1
2 2 2
3 1 1 1
2 2 1 1
2 1 1 1 1
1 1 1 1 1 1

We might prefer it to return the partitions in a different order, say one listing all
the partitions with large parts before those with small parts:

6
5 1
4 2
4 1 1
3 3
3 2 1
3 1 1 1
2 2 2
2 2 1 1
2 1 1 1 1
1 1 1 1 1 1

224 From Recursion to Iterators

This is equivalent to sorting the partitions. And we can get this order by sorting
the agenda before we process it. To do that, we’ll need a comparison function for
partitions:

Compare two partitions for preferred orderCODE LIBRARY
partitions sub partitions {

for my $i (0 .. $#$a) {

my $cmp = $b->[$i] <=> $a->[$i];

return $cmp if $cmp;

}

}

To compare two partitions, we just scan through them both one element at a time
until we find a difference; when we do, that’s the answer. Since two partitions
must have a difference somewhere before the end of either, we don’t have to
worry what happens if we fall off the end.4 Now we make a small change to the
iterator:

sub make_partition {CODE LIBRARY
make-part-sorted my $n = shift;

my @agenda = [$n];

return Iterator {

return unless @agenda;

my $item = pop @agenda;

my ($largest, @rest) = @$item;

my $min = $rest[0] || 1;

my $max = int($largest/2);

for ($min .. $max) {

push @agenda, [$largest-$_, $_, @rest];

}

@agenda = sort partitions @agenda;

return $item;

};

}

We sort the agenda into the order we want before extracting items from it. Rather
than sorting the entire array so that the item we want is at the end, a computation-
ally cheaper approach is to scan the agenda looking for the maximal element and

4 With ordinary lexical sorting, we have to worry about cases where one value is a prefix of another,
such as “fan” and “fandango”. In such a case, we do fall off the end. But that can’t happen with
partitions, because two such sequences of positive numbers can’t possibly add up to the same thing.

. 225

then to splice it out once we find it. If we plan to do a lot of heuristically-guided
searches, we should invest in building a priority-queue structure for the agenda.
A priority queue contains a collection of items, each with an associated priority;
it efficiently supports the operations of adding a new item to the collection, and
of extracting and removing the item with the largest priority.

5.3

You’ve probably noticed by now that all these agenda-type iterators look more or
less the same. We can abstract out the sameness and make a generic tree-search
iterator. To do that, we need to describe the tree. The constructor function will
receive two arguments: the root node, and a callback function, which, given
a node, generates its children in the tree. It will then carry out a tree search,
returning the tree nodes one at a time:

use Iterator_Utils 'Iterator'; CODE LIBRARY
make-dfs-simple

sub make_dfs_search {

my ($root, $children) = @_;

my @agenda = $root;

return Iterator {

return unless @agenda;

my $node = pop @agenda;

push @agenda, $children->($node);

return $node;

};

}

With this formulation, make_partition becomes:

sub make_partition { CODE LIBRARY
make-part-dfs-1my $n = shift;

my $root = [$n];

my $children = sub {

my ($largest, @rest) = @{shift()};

my $min = $rest[0] || 1;

my $max = int($largest/2);

map [$largest-$_, $_, @rest], ($min .. $max);

};

make_dfs_search($root, $children);

}

226 From Recursion to Iterators

Factoring make_partition into two parts in this way allows us to re-use the
make_dfs_search part.

We might outfit make_dfs_search with a filter that rejects uninteresting
items, since this is sure to be a common usage:

use Iterator_Utils 'Iterator';CODE LIBRARY
make-dfs

sub make_dfs_search {

my ($root, $children, $is_interesting) = @_;

my @agenda = $root;

return Iterator {

while (@agenda) {

my $node = pop @agenda;

push @agenda, $children->($node);

return $node if !$is_interesting || $is_interesting->($node);

}

return;

};

}

1;

We don’t need this for make_partition, since every node represents a correct
partition. But we might have needed it if we had used a slightly clumsier
implementation of the search:

require 'make-dfs-search';CODE LIBRARY
make-part-dfs-2

sub make_partition {

my $n = shift;

my $root = [$n, 1, []];

Here the nodes will have three parts: $n, the part of the original number that
we haven’t yet split off to any of the parts of the partition; a minimum part size,
initially 1; and a list of the parts we’ve split off so far, initially empty:

my $children = sub {

my ($n, $min, $parts) = @{shift()};

map [$n-$_, $_, [@$parts, $_]], ($min .. $n);

};

For each possible part size $_, from the minimum $min up to the maximum
$n, we split off a new part of size $_. To do this, we subtract the size from $n,
indicating that we now have to apportion a smaller value among the remaining

. 227

parts; we adjust the minimum value up to the new part size, so that any future
parts are at least that big and therefore the parts will be generated in order of
increasing size; and we append the new part to the list of parts.

Note that if $n < $min, there’s no possible solution. An example of such a
node will occur when we try to partition the number 6 and we first split off parts
of sizes 2 and then 3. Then we’re stuck: Only 1 remains, but 2, 3, 1 is forbidden
because the parts aren’t in increasing order.

my $is_complete = sub {

my ($n) = @{shift()};

$n == 0;

};

The partition is complete once we’ve reduced $n to exactly 0.
By default, make_dfs_search() returns interesting nodes from the agenda.

Here the nodes have extraneous information in them in addition to the partitions
themselves. So we’ll wrap make_dfs_search() in a call to imap() that strips out
the extra data, returning only the partition itself:

imap { $_->[2] }

make_dfs_search($root, $children, $is_complete);

}

We could similarly outfit make_dfs_search() with a callback to evaluate nodes
and allow the most valuable ones to be processed first. If we did, we would want
to rename it, because it would no longer be doing DFS. To do this properly
requires a good priority-queue implementation, which is outside the scope of
this chapter. Here’s an inefficient implementation:

sub make_dfs_value_search { CODE LIBRARY
make-dfs-valuemy ($root, $children, $is_interesting, $evaluate) = @_;

$evaluate = memoize($evaluate);

my @agenda = $root;

return Iterator {

while (@agenda) {

my $best_node_so_far = 0;

my $best_node_value = $evaluate->($agenda[0]);

for (0 .. $#agenda) {

my $val = $evaluate->($agenda[$_]);

next unless $val > $best_node_value;

$best_node_value = $val;

$best_node_so_far = $_;

228 From Recursion to Iterators

}

my $node = splice @agenda, $best_node_so_far, 1;

push @agenda, $children->($node);

return $node if !$is_interesting || $is_interesting->($node);

}

return;

};

}

The inefficient part is the scan over the entire agenda and the splice. There are a
number of ways to speed this up, but if it matters, the priority queue is probably
the best approach.

If we did do this, it would include DFS and BFS as easy special cases, since
we could use the following two valuations:

{

my ($d, $b) = (0, 0);

sub dfs_value { return $d++ }

sub bfs_value { return $b−− }

}

bfs_value, like a cantankerous grandfather, always reports the value of an old
node as being greater than that of the newer nodes; dfs_value, like the staff at
Wired magazine, does just the opposite.

One possible trap to be aware of when using make_dfs_search() is that
“depth first” doesn’t necessarily define the search order uniquely. Consider the
tree shown here.

DFS says that once we visit a node, we must visit its children before its
siblings. But it doesn’t say what order the siblings must be visited in. Both of the
orders shown in Figure 5.7 are depth-first for this tree.

Since the nodes generated by the call to $children are pushed onto the end
of the agenda and then popped off from the end, the items will be processed
in the reverse of the order that $children returned them, with the last item in

. 229

1

42

53

1

24

35

 . Two different DFS orders for the same tree.

$children’s return list processed immediately. To prevent surprises, we’ll make
one final change to make_dfs_search:

sub make_dfs_search { CODE LIBRARY
make-dfs-finalmy ($root, $children, $is_interesting) = @_;

my @agenda = $root;

return Iterator {

while (@agenda) {

my $node = pop @agenda;

push @agenda, reverse $children->($node);

return $node if !$is_interesting || $is_interesting->($node);

}

return;

};

}

Now branches will be traversed in the order they were generated.

5.4

5.4.1 Tail-Call Elimination

In addition to the agenda technique we looked at in detail in the previous section,
there are a few other techniques that are generally useful for turning recursive
functions into iterative ones. One of the most useful is tail-call elimination.

First, let’s consider the implementation of function calls generally. Usually
there is a stack. When function B wants to call C, it pushes C’s arguments onto
this stack and transfers control to C. C then removes the arguments from the
stack, does its computations (possibly including other function calls), pushes
its intended return value onto the stack, and transfers control back to B. B then

230 From Recursion to Iterators

pops the return value off the stack and continues. If there are three functions, as
follows:

sub A { A1; $B = B(...); A2; }

sub B { B1; $C = C(...); B2; return $Bval; }

sub C { C1; return $Cval; }

then the sequence of events is:

A: A1;
Push B’s arguments

B: Pop B’s arguments
B1;
Push C’s arguments

C: Pop C’s arguments
C1;
Push C’s return value

B: Pop C’s return value
B2;
Push B’s return value

A: Pop B’s return value
A2;

Now let’s suppose that function B is a little simpler, and doesn’t do anything
except return after it calls C:

sub A { A1; $B = B(...); A2; }

sub B { B1; return C(...); }

sub C { C1; return $Cval; }

The sequence of events is as before, up to B2, which was eliminated; and then
goes like this:

...
C: Push C’s return value
B: Pop C’s return value

(There is no B2 any more)
Push B’s return value (the same as C’s)

A: Pop B’s return value
A2;

All of B’s work here is useless. Because B’s return value is the same as C’s, all B
is doing is removing C’s return value from the stack and then putting it back
again immediately. A common optimization in programming-language imple-
mentations is to eliminate the return to B entirely. The final call to C is known

. 231

as a tail call, and the optimization is called tail-call elimination. When function
B is compiled, the compiler will notice that the call from B to C is a tail call,
and will arrange for it to be done in a special way. Normally, B would record its
own address so that C would know where to transfer control back to when it was
finished. Instead, B erases its own frame from the stack and lets C borrow the
return information that B originally got from A. When C returns, it will return
directly to A, bypassing B entirely:

...

C: Push C’s return value
A: Pop C’s return value (thinking it is B’s)

A2;

This is the tail-call optimization. Perl could in principle perform this optimization,
but as of 5.8.6, it doesn’t.

Now let’s consider the greatest common divisor function or GCD function.
This function takes two numbers, m and n, and yields the greatest number g
such that g divides evenly into both m and n. There is always such a number,
since 1 divides evenly into both m and n, although the GCD is often larger
than 1. For example, the GCD of 42 and 360 is 6, and the GCD of 48 and
20 is 4. Probably the most well-known application of the GCD is in putting
fractions into lowest terms. Given a fraction, say 42/360, one finds the GCD
of the numerator and denominator, in this case 6, and then cancels that factor
from the top and bottom of the fraction, giving 42/360 = 7 · 6 / 60 · 6 = 7/60.
Similarly 48/20 = 12 · 4 / 5 · 4 = 12/5.

There is a simple algorithm for calculating the GCD of two numbers,
called Euclid’s algorithm, which is in fact the oldest surviving nontrivial numeric
algorithm. Here it is translated into Perl:

sub gcd { CODE LIBRARY
gcdmy ($m, $n) = @_;

if ($n == 0) {

return $m;

}

return gcd($n, $m % $n);

}

The execution of gcd(48, 20) goes like this:

call gcd(48, 20) # Call A

call gcd(20, 8) # Call B

call gcd(8, 4) # Call C

call gcd(4, 0) # Call D

232 From Recursion to Iterators

return 4

return 4

return 4

return 4

The stack manipulations are as follows:

original
caller: push 48, 20 onto stack

transfer control to gcd

A: pop 48, 20 from stack
...

C: push 4, 0 onto stack
transfer control to gcd

D: pop 4, 0 from stack
push 4 onto stack
transfer control to gcd

C: pop 4 from stack
push 4 onto stack
transfer control to gcd

B: pop 4 from stack
push 4 onto stack
transfer control to gcd

A: pop 4 from stack
push 4 onto stack
transfer control back to original caller

The tail-call optimization allows call D to return the 4 directly back to the original
caller, skipping all the steps at the end.

Since Perl doesn’t perform the tail-call optimization automatically, we can
help it out. The tail-call optimization would normally replace the current call
frame with the one for the function being called. Perl won’t do that internally,
but since the call frame has nothing in it except a bunch of variable bindings, we
can accomplish the same thing by just rebinding the variables to the appropriate
variables. “Transfer control to gcd,” which normally means “create a new call
frame and activate it” just becomes “transfer control back the top of the current
function” — in other words, a local goto. Since goto itself is considered naughty,
we’ll use a loop, which is the same thing:

sub gcd {CODE LIBRARY
gcd2 my ($m, $n) = @_;

until ($n == 0) {

. 233

($m, $n) = ($n, $m % $n);

}

return $m;

}

The condition for performing the until loop is the same as the one guarding the
recursive call in the old code. The original function made a recursive call unless
$n was zero; here it performs the loop body. The body of the loop transforms
the arguments $m and $n in the same way that the recursive code in the original
function did, replacing $m with $n and $n with $m % $n. Thus the until loop sets
up the new values of $m and $n that would have been seen by the recursively-called
instance of gcd, and then effectively restarts the function. In the case $n == 0,
there is no recursively-called instance, so the function skips that step and returns
immediately.

Here’s another example: printing the elements of a sorted binary tree in
order. The recursive code looks like this:

sub print_tree {

my $t = shift;

return unless $t; # Null tree

print_tree($t->left);

print $t->root, "\n";

print_tree($t->right);

}

Replacing the tail call with a loop yields this version:

sub print_tree {

my $t = shift;

while ($t) {

print_tree($t->left);

print $t->root, "\n";

$t = $t->right;

}

}

Here we’ve replaced the tail call, print_tree($t->right), with code that modifies
$t appropriately, replacing it with $t->right, and then jumps back up to the top
of the function. Since print_tree($t->left) isn’t a tail call, we can’t eliminate
it in this way. We’ll eliminate it in a different way later on.

234 From Recursion to Iterators

A variation of print_tree() handles the empty-tree case before the recursive
calls, instead of afterwards, potentially optimizing away many such calls:

sub print_tree {

my $t = shift;

print_tree($t->left) if $t->left;

print $t->root, "\n";

print_tree($t->right) if $t->right;

}

Eliminating the tail call yields:

sub print_tree {

my $t = shift;

do {

print_tree($t->left) if $t->left;

print $t->root, "\n";

$t = $t->right;

} while $t;

}

 ’

Here’s a particularly interesting example, taken from Mastering Algorithms with
Perl 5. Given a set of key–value pairs (represented as a hash, of course), it returns
the power set of that set. This is the set of all hashes that can be obtained from
the original hash by deleting zero or more of the pairs.

For example, the power set of {apple => 'red', banana => 'yellow',

grape => 'purple'} is:

{apple => 'red', banana => 'yellow', grape => 'purple'}

{apple => 'red', banana => 'yellow'}

{apple => 'red', grape => 'purple'}

{apple => 'red'}

{banana => 'yellow', grape => 'purple'}

{banana => 'yellow'}

{grape => 'purple'}

{}

5 This example is taken from Orwant, Hietaniemi, and Macdonald, Mastering Algorithms with Perl,
pp. 237–238. O’Reilly and Associates, 1999.

. 235

The power set is returned as a hash of hashes. The keys of the return value are
unimportant, and the values are the elements of the power set. Here’s the code
that Hietaniemi presents:

sub powerset_recurse ($;@) { CODE LIBRARY
powerset-0

my ($set, $powerset, $keys, $values, $n, $i) = @_;

if (@_ == 1) { # Initialize.

my $null = { };

$powerset = { $null, $null };

$keys = [keys %{ $set }];

$values = [values %{ $set }];

$nmembers = keys %{ $set }; # This many rounds.

$i = 0; # The current round.

}

Ready?

return $powerset if $i == $nmembers;

Remap.

my @powerkeys = keys %{ $powerset };

my @powervalues = values %{ $powerset };

my $powern = @powerkeys;

my $j;

for ($j = 0; $j < $powern; $j++) {

my %subset = ();

Copy the old set to the subset.

@subset{keys %{ $powerset->{ $powerkeys [$j] } }} =

values %{ $powerset->{ $powervalues[$j] } };

Add the new member to the subset.

$subset{$keys->[$i]} = $values->[$i];

Add the new subset to the powerset.

$powerset->{ \%subset } = \%subset;

}

Recurse.

236 From Recursion to Iterators

powerset_recurse($set, $powerset, $keys, $values, $nmembers, $i+1);

}

Clearly, the recursive call here is a tail call. Applying the usual tail-call optimiza-
tion, we can replace the recursive call with a loop. The special case initialization
for the last five parameters no longer needs to be a special case; we just take care
of the initialization before we enter the loop. The peculiar ($;@) prototype goes
away entirely, or maybe becomes ($):

sub powerset_recurse ($) {CODE LIBRARY
powerset-1

my ($set) = @_;

my $null = { };

my $powerset = { $null, $null };

my $keys = [keys %{ $set }];

my $values = [values %{ $set }];

my $nmembers = keys %{ $set }; # This many rounds.

my $i = 0; # The current round.

until ($i == $nmembers) {

Remap.

my @powerkeys = keys %{ $powerset };

my @powervalues = values %{ $powerset };

my $powern = @powerkeys;

my $j;

for ($j = 0; $j < $powern; $j++) {

my %subset = ();

Copy the old set to the subset.

@subset{keys %{ $powerset->{ $powerkeys [$j] } }} =

values %{ $powerset->{ $powervalues[$j] } };

Add the new member to the subset.

$subset{$keys->[$i]} = $values->[$i];

Add the new subset to the powerset.

$powerset->{ \%subset } = \%subset;

}

$i++;

. 237

}

return $powerset;

}

Now we can see that $i, the loop counter variable, just runs from 0 up to
$nmembers-1, so we can rewrite the while loop as a for loop:

sub powerset_recurse ($) { CODE LIBRARY
powerset-2

my ($set) = @_;

my $null = { };

my $powerset = { $null, $null };

my $keys = [keys %{ $set }];

my $values = [values %{ $set }];

my $nmembers = keys %{ $set }; # This many rounds.

for my $i (0 .. $nmembers-1) {

Remap.

my @powerkeys = keys %{ $powerset };

my @powervalues = values %{ $powerset };

my $powern = @powerkeys;

my $j;

for ($j = 0; $j < $powern; $j++) {

my %subset = ();

Copy the old set to the subset.

@subset{keys %{ $powerset->{ $powerkeys [$j] } }} =

values %{ $powerset->{ $powervalues[$j] } };

Add the new member to the subset.

$subset{$keys->[$i]} = $values->[$i];

Add the new subset to the powerset.

$powerset->{ \%subset } = \%subset;

}

}

return $powerset;

}

238 From Recursion to Iterators

Now that we’ve done this, it appears that the only purpose of $i is to index
@$keys and @$values. Since these are precisely the keys and values of %$set, we
can eliminate all three variables in favor of a simple while (each %$set) loop:

sub powerset_recurse ($) {CODE LIBRARY
powerset-3

my ($set) = @_;

my $null = { };

my $powerset = { $null, $null };

while (my ($key, $value) = each %$set) {

Remap.

my @powerkeys = keys %{ $powerset };

my @powervalues = values %{ $powerset };

my $powern = @powerkeys;

my $j;

for ($j = 0; $j < $powern; $j++) {

my %subset = ();

Copy the old set to the subset.

@subset{keys %{ $powerset->{ $powerkeys [$j] } }} =

values %{ $powerset->{ $powervalues[$j] } };

Add the new member to the subset.

$subset{$key} = $value;

Add the new subset to the powerset.

$powerset->{ \%subset } = \%subset;

}

}

return $powerset;

}

If we’re feeling sharp, we might notice the same thing about $j:

sub powerset_recurse ($) {CODE LIBRARY
powerset-4

my ($set) = @_;

my $null = { };

. 239

my $powerset = { $null, $null };

while (my ($key, $value) = each %$set) {

my @newitems;

while (my ($powerkey, $powervalue) = each %$powerset) {

my %subset = ();

Copy the old set to the subset.

@subset{keys %{ $powerset->{$powerkey} } } =

values %{ $powerset->{$powervalue} };

Add the new member to the subset.

$subset{$key} = $value;

Prepare to add the new subset to the powerset.

push @newitems, \%subset;

}

$powerset->{ $_ } = $_ for @newitems;

}

return $powerset;

}

Getting rid of the unnecessary recursion made the state changes of the variables
clearer and kicked off a series of simplifications that left the function with about
one-third less code.

5.4.2 Creating Tail Calls

Often, a function that doesn’t have a tail call can be easily converted into one
that does. For example, consider the decimal-to-binary conversion function of
Chapter 1:

sub binary {

my ($n) = @_;

return $n if $n == 0 || $n == 1;

240 From Recursion to Iterators

my $k = int($n/2);

my $b = $n % 2;

my $E = binary($k);

return $E . $b;

}

Here the recursive call isn’t in the tail position. The return value from the recursive
call isn’t returned directly, but rather is concatenated to $b.

The general technique for converting such a function to one that does a tail
call is to add an auxiliary parameter that records the return value so far. When
the other parameters indicate that the recursion is complete, the function returns
the return-value parameter. Instead of making a recursive call, waiting for the
return value, modifying it, and returning the result, the modified version takes
the return value parameter, modifies it appropriately, and passes it along. When
we apply this idea to the binary() function, we get this:

sub binary {CODE LIBRARY
binary-1 my ($n, $RETVAL) = @_;

$RETVAL = "" unless defined $RETVAL;

my $k = int($n/2);

my $b = $n % 2;

$RETVAL = "$b$RETVAL";

return $RETVAL if $n == 0 || $n == 1;

binary($k, $RETVAL);

}

$RETVAL records the bit sequence computed so far; if unspecified, it defaults to
the empty string. On each call, the function appends a new bit to this bit string.
If $n is 0 or 1, that’s the base case, and the function just returns the bit string;
otherwise, it makes a recursive call with the new value of $n and the new bit
string.

Applying the tail-call optimization to this version of binary() yields:

sub binary {CODE LIBRARY
binary-2 my ($n, $RETVAL) = @_;

$RETVAL = "";

while (1) {

my $k = int($n/2);

my $b = $n % 2;

$RETVAL = "$b$RETVAL";

return $RETVAL if $n == 0 || $n == 1;

. 241

$n = $k;

}

}

and then optimizing away the unnecessary $k:

sub binary { CODE LIBRARY
binary-3my ($n, $RETVAL) = @_;

$RETVAL = "";

while (1) {

my $b = $n % 2;

$RETVAL = "$b$RETVAL";

return $RETVAL if $n == 0 || $n == 1;

$n = int($n/2);

}

}

Adding an extra parameter to the factorial() function of Chapter 1 transforms
this:

sub factorial { CODE LIBRARY
factorial-0my ($n) = @_;

return 1 if $n == 0;

return factorial($n-1) * $n;

}

into this:

sub factorial { CODE LIBRARY
factorial-1my ($n, $product) = @_;

$product = 1 unless defined $product;

return $product if $n == 0;

return factorial($n-1, $n * $product);

}

Then we can eliminate the tail call:

sub factorial { CODE LIBRARY
factorial-2my ($n) = @_;

my $product = 1;

until ($n == 0) {

$product *= $n;

$n--;

242 From Recursion to Iterators

}

return $product;

}

5.4.3 Explicit Stacks

When we last saw the print_tree() example, it looked like this:

sub print_tree {

my $t = shift;

do {

print_tree($t->left) if $t->left;

print $t->root, "\n";

$t = $t->right;

} while $t;

}

The original function had two recursive calls, one of which was a tail call, and
was eliminated in this version. The other call remains.

To get rid of a recursive call embedded in the middle of a function may
require heavy machinery. The heaviest machinery is to explicitly simulate the
same stack operations that Perl normally performs implicitly on function call
and return. Making a recursive call records the function’s current state on the
stack, and returning from a call pops the stack. The function’s current state, as
we saw earlier, may in general include all of its local variables and parameters.

The state of print_tree() comprises nothing more than $t, the tree argu-
ment itself. So our state-saving operation will be simple. We replace the recursive
call print_tree($t->left) with a stack push:

sub print_tree {

my $t = shift;

my @STACK;

do {

push(@STACK, $t), $t = $t->left if $t->left;

and then, in place of the function return, we add a stack pop and a jump back
to the line right after the recursive call:

RETURN:

print $t->root, "\n";

. 243

$t = $t->right;

} while $t;

return unless @STACK;

$t = pop @STACK;

goto RETURN;

}

(Or, if the stack is empty, then the function returns for real instead of popping.)
One objection to this is likely to be that it uses goto, which people think is

naughty. We can get rid of the goto by transforming the code to this:

sub print_tree {

my $t = shift;

my @STACK;

RIGHT: {

push(@STACK, $t), $t = $t->left while $t->left;

do {

print $t->root, "\n";

$t = $t->right;

redo RIGHT if $t;

return unless @STACK;

$t = pop @STACK;

} while 1;

}

}

This is really the same thing, except we have cosmetically disguised the goto as
a do-while loop, and turned the old do-while loop into a redo. Loop control
statements such as next, last, and redo are no more than gotos in disguise, of
course, and in fact so are loops.

 fib()

Let’s apply the same process to the Fibonacci function:

sub fib { CODE LIBRARY
fib-0my $n = shift;

if ($n < 2) { return $n }

fib($n-2) + fib($n-1);

}

244 From Recursion to Iterators

There are no tail calls here. The fib($n-1) looks like it might be, but it isn’t,
because it’s not the very last thing the function does before it returns; the addition
is. So we can’t use tail-call elimination. Instead, we’ll roll out the heavy guns and
manage the stack explicitly.

The state tracked by fib() is more complicated than in the print_tree()

example. The parameter $n is clearly part of the state, but there is some additional
state that isn’t so obvious. Since there are two recursive calls to fib, after we return
from a recursive call, we have to remember how to pick up where we left off: Were
we about to make the second call, or were we about to perform the addition?
Moreover, during the second recursive call, the function’s state must include the
result from the first recursive call.

In difficult cases, the first step in eliminating recursive calls is to make this
state explicit. We rewrite fib() as follows:

sub fib {CODE LIBRARY
fib-1 my $n = shift;

if ($n < 2) {

return $n;

} else {

my $s1 = fib($n-2);

my $s2 = fib($n-1);

return $s1 + $s2;

}

}

The second step is to introduce a loop to separate the initialization of the function
from the body:

sub fib {CODE LIBRARY
fib-2 my $n = shift;

while (1) {

if ($n < 2) {

return $n;

} else {

my $s1 = fib($n-2);

my $s2 = fib($n-1);

return $s1 + $s2;

}

}

}

. 245

Eventually, we’ll have a stack that simulates Perl’s call stack; the loop we just
introduced is simulating Perl itself.

The third step is to break the body into chunks, each of which contains the
code from the end of one recursive call to the beginning of the next. Breaks may
occur in the middle of a statement. For example, in my $s1 = fib($n-1), the
$n-1 is computed before the call, but the assignment is done after the call, in a
separate chunk. Put each chunk in a separate branch of an if-else tree:

sub fib { CODE LIBRARY
fib-3my $n = shift;

my ($s1, $s2, $return);

while (1) {

if ($n < 2) {

return $n;

} else {

if ($BRANCH == 0) {

$return = fib($n-2);

} elsif ($BRANCH == 1) {

$s1 = $return;

$return = fib($n-1);

} elsif ($BRANCH == 2) {

$s2 = $return;

$return = $s1 + $s2;

}

}

}

}

Because a statement like $s1 = fib($n-2)was split across chunks, I’ve introduced
a temporary value, $return, to hold the return value from fib($n-2) until it can
be assigned to $s1. I’ve also moved the declaration of $s1 and $s2 up to the top
of the function. Our new fib() function is effectively simulating the behavior of
the old one, and $s1 and $s2 represent information about the function’s internal
state that are normally traced internally by Perl. They are therefore global to the
function itself.

Similarly, $BRANCH will record where in the function we left off to make a
recursive call. This is another thing Perl normally tracks internally. Initially, it’s
0, indicating that we want to start at the top of the body. When we simulate a
return from a recursive call, it will be 1 or 2, telling us to pick up later on in the
body where we left off:

sub fib { CODE LIBRARY
fib-4my $n = shift;

246 From Recursion to Iterators

my ($s1, $s2, $return);

my $BRANCH = 0;

while (1) {

if ($n < 2) {

return $n;

} else {

if ($BRANCH == 0) {

$return = fib($n-2);

} elsif ($BRANCH == 1) {

$s1 = $return;

$return = fib($n-1);

} elsif ($BRANCH == 2) {

$s2 = $return;

$return = $s1 + $s2;

}

}

}

}

Returning directly from the middle of the while loop is inappropriate, because
the simulated stack might not be empty. So for step 4, we’ll convert any remaining
returns into assignments to $return. Later on in the function, we’ll return the
contents of $return if the simulated stack is empty:

sub fib {CODE LIBRARY
fib-5 my $n = shift;

my ($s1, $s2, $return);

my $BRANCH = 0;

while (1) {

if ($n < 2) {

$return = $n;

} else {

if ($BRANCH == 0) {

$return = fib($n-2);

} elsif ($BRANCH == 1) {

$s1 = $return;

$return = fib($n-1);

} elsif ($BRANCH == 2) {

$return = $s1 + $s2;

}

}

}

}

. 247

Step 5 is the important one: Replace all the recursive calls with code that pushes
the function state onto the synthetic stack and then transfers control back to the
top of the function:

sub fib { CODE LIBRARY
fib-6my $n = shift;

my ($s1, $s2, $return);

my $BRANCH = 0;

my @STACK;

while (1) {

if ($n < 2) {

$return = $n;

} else {

if ($BRANCH == 0) {

push @STACK, [$BRANCH, $s1, $s2, $n];

$n -= 2;

$BRANCH = 0;

next;

} elsif ($BRANCH == 1) {

$s1 = $return;

push @STACK, [$BRANCH, $s1, $s2, $n];

$n -= 1;

$BRANCH = 0;

next;

} elsif ($BRANCH == 2) {

$s2 = $return;

$return = $s1 + $s2;

}

}

}

}

Since this is important, let’s look at one of the calls in detail. When fib() calls
fib($n-2), it saves all its state and then transfers control back to the top of fib(),
which starts up just as before, but with argument $n-2 instead of $n. The code
we put in is doing exactly that. It saves the current state on the stack:

push @STACK, [$BRANCH, $s1, $s2, $n];

Then it adjusts the value of the argument from $n to $n-2:

$n -= 2;

248 From Recursion to Iterators

Then it adjusts the value of $BRANCH to say that control should continue from the
top of the function, not the middle:

$BRANCH = 0;

This was unnecessary in this case, since $BRANCH was already 0, but I left it in for
symmetry with the second branch, where it is needed.

Finally, we transfer control back up to the top:

next;

We’re almost done. We’ve simulated the recursive calls, and the last thing we need
to do is simulate the returns. The function’s desired return value is in $return.
To simulate a function return, check to see if the synthetic stack is empty. If so,
then the function is really returning to its caller, and should just return $return.
Otherwise, we pop the saved state off the stack and resume execution where we
left off:

sub fib {CODE LIBRARY
fib-7 my $n = shift;

my ($s1, $s2, $return);

my $BRANCH = 0;

my @STACK;

while (1) {

if ($n < 2) {

$return = $n;

} else {

if ($BRANCH == 0) {

push @STACK, [$BRANCH, $s1, $s2, $n];

$n -= 2;

$BRANCH = 0;

next;

} elsif ($BRANCH == 1) {

$s1 = $return;

push @STACK, [$BRANCH, $s1, $s2, $n];

$n -= 1;

$BRANCH = 0;

next;

} elsif ($BRANCH == 2) {

$s2 = $return;

$return = $s1 + $s2;

. 249

}

}

return $return unless @STACK;

($BRANCH, $s1, $s2, $n) = @{pop @STACK};

$BRANCH++;

}

}

We increment $BRANCH so that execution will resume with the chunk following
the one we were in when we made the call.

And amazingly, we’re now done. This function does indeed compute
Fibonacci numbers.

Because I was showing a general transformation of a recursive into a nonre-
cursive function, the result has some unnecessary code. For example, I included
an unnecessary $BRANCH = 0 line for symmetry. In branch 1, we assign $s1 from
$return and then immediately push its value onto the stack; we may as well push
$return directly onto the stack without the intervening assignment. In branch
0, we push $s1 into the stack, but its value is always undefined at this point, so
we may as well just push 0 directly:

sub fib { CODE LIBRARY
fib-8my $n = shift;

my ($s1, $s2, $return);

my $BRANCH = 0;

my @STACK;

while (1) {

if ($n < 2) {

$return = $n;

} else {

if ($BRANCH == 0) {

push @STACK, [$BRANCH, 0, $s2, $n];

$n -= 2;

next;

} elsif ($BRANCH == 1) {

push @STACK, [$BRANCH, $return, $s2, $n];

$n -= 1;

$BRANCH = 0;

next;

} elsif ($BRANCH == 2) {

$s2 = $return;

250 From Recursion to Iterators

$return = $s1 + $s2;

}

}

return $return unless @STACK;

($BRANCH, $s1, $s2, $n) = @{pop @STACK};

$BRANCH++;

}

}

Performing the same sort of eliminations for $s2 as we did for $s1, we discover
that $s2 is entirely unnecessary. The only place it’s used is in branch 2, and it’s
used immediately after it’s assigned:

sub fib {CODE LIBRARY
fib-9 my $n = shift;

my ($s1, $return);

my $BRANCH = 0;

my @STACK;

while (1) {

if ($n < 2) {

$return = $n;

} else {

if ($BRANCH == 0) {

push @STACK, [$BRANCH, 0, $n];

$n -= 2;

next;

} elsif ($BRANCH == 1) {

push @STACK, [$BRANCH, $return, $n];

$n -= 1;

$BRANCH = 0;

next;

} elsif ($BRANCH == 2) {

$return += $s1;

}

}

return $return unless @STACK;

($BRANCH, $s1, $n) = @{pop @STACK};

$BRANCH++;

}

}

. 251

We might also optimize branch 0 a little. In branch 0, we push the stack,
decrement $n by 2, and pass control back to the top of the function. Typically,
we then come back immediately and do it again, forming a loop. We can tighten
up the loop:

sub fib { CODE LIBRARY
fib-10my $n = shift;

my ($s1, $return);

my $BRANCH = 0;

my @STACK;

while (1) {

if ($n < 2) {

$return = $n;

} else {

if ($BRANCH == 0) {

push (@STACK, [$BRANCH, 0, $n]), $n -= 2 while $n >= 2;

$return = $n;

} elsif ($BRANCH == 1) {

push @STACK, [$BRANCH, $return, $n];

$n -= 1;

$BRANCH = 0;

next;

} elsif ($BRANCH == 2) {

$return += $s1;

}

}

return $return unless @STACK;

($BRANCH, $s1, $n) = @{pop @STACK};

$BRANCH++;

}

}

Since that tight loop is more efficient than the large main loop, we’d like to do
it as often as possible. As it is, though, we do it only about n/2 times. Since it
doesn’t matter whether fib() makes the fib($n-2) or the fib($n-1) call first, we
can exchange the first and second chunks, giving us:

sub fib { CODE LIBRARY
fib-11my $n = shift;

my ($s1, $return);

252 From Recursion to Iterators

my $BRANCH = 0;

my @STACK;

while (1) {

if ($n < 2) {

$return = $n;

} else {

if ($BRANCH == 0) {

push (@STACK, [$BRANCH, 0, $n]), $n -= 1 while $n >= 2;

$return = $n;

} elsif ($BRANCH == 1) {

push @STACK, [$BRANCH, $return, $n];

$n -= 2;

$BRANCH = 0;

next;

} elsif ($BRANCH == 2) {

$return += $s1;

}

}

return $return unless @STACK;

($BRANCH, $s1, $n) = @{pop @STACK};

$BRANCH++;

}

}

This is a little faster than the previous version.
We can also clean up one more line of code by eliminating $BRANCH++ at the

bottom. Instead of pushing the old value of $BRANCH onto the stack and then
incrementing it after we pop it again, we’ll just push the value of $BRANCH that
we want to have when we return:

sub fib {CODE LIBRARY
fib-12 my $n = shift;

my ($s1, $return);

my $BRANCH = 0;

my @STACK;

while (1) {

if ($n < 2) {

$return = $n;

} else {

if ($BRANCH == 0) {

. 253

push (@STACK, [1, 0, $n]), $n -= 1 while $n >= 2;

$return = $n;

} elsif ($BRANCH == 1) {

push @STACK, [2, $return, $n];

$n -= 2;

$BRANCH = 0;

next;

} elsif ($BRANCH == 2) {

$return += $s1;

}

}

return $return unless @STACK;

($BRANCH, $s1, $n) = @{pop @STACK};

}

}

There are several things we can learn from all of this. Most important, it affords
us a detailed look into what is really required to implement recursive calls. Many
of the small tweaks and optimizations we applied at the end of the conversion
process are directly analogous to optimizations that compilers and interpreters
can perform internally.

Recursion elimination may also be useful in reducing the memory footprint
of a function. With Perl’s built-in recursion, you don’t get a choice about what
state is saved on the stack: Absolutely everything is saved. Once we have the stack
represented explicitly in the program, it may become clear that not everything
needs to be saved on every call, and we may be able to reduce stack usage, as we
did by eliminating $s2.

Finally, in some cases it will turn out that the iterative version of the code
is faster or simpler than the recursive version. In these cases, such as the power
set function example, the simplifications suggested by recursion elimination may
lead to a cascade of further simplifications.

